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Fairly Dividing a Cake 
after Some Parts were

Burnt in the Oven

Erel Segal-Halevi
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Fair Division — Definition
Dividing a heterogeneous resource to
agents with different preferences such that 
everyone’s share is “fair” by their preferences.
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Fair Division — Then
Dividing a heterogeneous resource to
agents with different preferences such that 
everyone’s share is “fair” by their preferences.

Steinhaus

Banach Knaster Dubins Spanier
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Fair Division — Today
Dividing a heterogeneous resource to
agents with different preferences such that 
everyone’s share is “fair” by their preferences.

http://fairoutcomes.com
http://spliddit.org

https://math.hmc.edu/ su/fairdivision  
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Fair Division — Examples
Dividing a heterogeneous resource to
agents with different preferences such that 
everyone’s share is “fair” by their preferences.

Cakes

Inherited 
items

Land Time

Tasks
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Fair Division — Examples
Dividing a heterogeneous resource to
agents with different preferences such that 
everyone’s share is “fair” by their preferences.

Cakes

Land Time
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Continuous Resource
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Continuous Resource
Cake = Interval   [0,1].
n agents.    Value-densities     v

i 
: Cake → R

Value = integral:                   V
i
(X

i
) = ∫

Xi
 v

i
(x) dx 
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Continuous Resource
Cake = Interval   [0,1].
n agents.    Value-densities     v

i 
: Cake → R

Value = integral:                   V
i
(X

i
) = ∫

Xi
 v

i
(x) dx 

Fairness (envy-freeness):  For all i, j:  V
i
(X

i
)  ≥ V

i
(X

j
) 

                                           For all i:    X
i    

is connected.
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Continuous Resource
Cake = Interval   [0,1].
n agents.    Value-densities     v

i 
: Cake → R

Value = integral:                   V
i
(X

i
) = ∫

Xi
 v

i
(x) dx 

Fairness (envy-freeness):  For all i, j:  V
i
(X

i
)  ≥ V

i
(X

j
) 

                                           For all i:    X
i    

is connected.

Easy for 2 agents.    Difficult for 3 or more.
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Valuation types
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Valuation types

All positive - 
solved by 
Stromquist (1980), 
Simmons (1980)
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Valuation types

All positive - 
solved by 
Stromquist (1980), 
Simmons (1980)

All negative  –
solved by 
Su (1999)
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Valuation types

All positive - 
solved by 
Stromquist (1980), 
Simmons (1980)

All negative  –
solved by 
Su (1999)

General  –
this work.

Inspired by: 
Bogomolnaia et al 
2017, “Competitive 
Division of a Mixed 
Manna“.
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Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents: 
     (l

1
, l

2
, l

3
)

     l
1
+l

2
+l

3
 = 1
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Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents: 
     (l

1
, l

2
, l

3
)

     l
1
+l

2
+l

3
 = 1

Envy-free division =
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Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents: 
     (l

1
, l

2
, l

3
)

     l
1
+l

2
+l

3
 = 1

Envy-free division =
   point in which 
   each agent prefers 
   a different piece.
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Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.
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Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.

b. Assign each vertex to a 
different agent such that in 
each sub-simplex, all 
agents are represented.
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Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.

b. Assign each vertex to a 
different agent such that in 
each sub-simplex, all 
agents are represented.

c. Ask each agent to label 
all its vertices by the index 
of his favorite piece.
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Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.

b. Assign each vertex to a 
different agent such that in 
each sub-simplex, all 
agents are represented.

c. Ask each agent to label 
all its vertices by the index 
of his favorite piece.

d. A simplex labeled by all n 
labels = an approximately-
envy-free division.
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Triangulation – Positive Agents
Fact: When all agents have 
positive valuations, each face 
is labeled only with the labels 
of its endpoints.
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Triangulation – Positive Agents
Fact: When all agents have 
positive valuations, each face 
is labeled only with the labels 
of its endpoints.
Lemma (Sperner 1929): 
When each face is labeled 
only with the labels of its 
endpoints, a fully-labeled sub-
simplex exists.
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Triangulation – Positive Agents
Fact: When all agents have 
positive valuations, each face 
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of its endpoints.
Lemma (Sperner 1929): 
When each face is labeled 
only with the labels of its 
endpoints, a fully-labeled sub-
simplex exists.
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Triangulation – Positive Agents
Fact: When all agents have 
positive valuations, each face 
is labeled only with the labels 
of its endpoints.
Lemma (Sperner 1929): 
When each face is labeled 
only with the labels of its 
endpoints, a fully-labeled sub-
simplex exists.
Corollary: when all valuations 
are positive, an 
approximately-envy-free 
division exists.
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Triangulation – Positive Agents
Fact: When all agents have 
positive valuations, each face 
is labeled only with the labels 
of its endpoints.
Lemma (Sperner 1929): 
When each face is labeled 
only with the labels of its 
endpoints, a fully-labeled sub-
simplex exists.
Corollary: when all valuations 
are positive, an 
approximately-envy-free 
division exists.
Corollary (Stromquist 1980, 
Simmons 1980, Su 1999): 
when valuations are also 
continuous, an 
envy-free division exists.
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Triangulation – Negative Agents
Fact: When all agents have 
negative valuations, it is 
possible label the n main 
vertices such that each face is 
labeled only with the labels of 
its endpoints.
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Triangulation – Negative Agents
Fact: When all agents have 
negative valuations, it is 
possible label the n main 
vertices such that each face is 
labeled only with the labels of 
its endpoints.

Corollary: when all valuations 
are negative, an 
approximately-envy-free 
division exists.
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Triangulation – Negative Agents
Fact: When all agents have 
negative valuations, it is 
possible label the n main 
vertices such that each face is 
labeled only with the labels of 
its endpoints.

Corollary: when all valuations 
are negative, an 
approximately-envy-free 
division exists.

Corollary (Su 1999): when 
valuations are also 
continuous, an envy-free 
division exists.
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Triangulation – General Agents

In general, the  
conditions for 
Sperner‘s lemma 
are not satisfied.

What can we do?



Fair Cake-Cutting / Erel Segal-Halevi 40

Boundary Permutation Condition
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Boundary Permutation Condition
Definition: Two vertices 
in the simplex are called 
friends if they have the 
same ordered list of 
non-zero coordinates.
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Boundary Permutation Condition
Definition: Two vertices 
in the simplex are called 
friends if they have the 
same ordered list of 
non-zero coordinates.

Fact: Each agent‘s 
labelings on friends are  
same up to permutation:
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Boundary Permutation Condition

Pref: Left Right Empty

F
12

1 2 3 Even

F
13

1 3 2 Odd

F
23

2 3 1 Even

Definition: Two vertices 
in the simplex are called 
friends if they have the 
same ordered list of 
non-zero coordinates.

Fact: Each agent‘s 
labelings on friends are  
same up to permutation:
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Degree of Labeling
 Labeling ≡ mapping from triangulation vertices to vertices of Q
                                                                   (follows Musin 2014)
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Degree of Labeling
 Labeling ≡ mapping from triangulation vertices to vertices of Q
                                                                   (follows Musin 2014)

Degree of mapping = net number of rounds (CCW=positive).
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Degree of Labeling
 Labeling ≡ mapping from triangulation vertices to vertices of Q
                                                                   (follows Musin 2014)

Degree of mapping = net number of rounds (CCW=positive).
Lemma: degree on boundary = degree in interior.
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Steps in Existence Proof

Step Proved for
1.    n agent-labelings with 
permutation condition 

    → Combined labeling with 
permutation condition

Any n

2. Permutation condition

    →Nonzero boundary degree

n = 3

3. Boundary degree
       = Interior degree

Any n (?)
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Step 1: n labelings  1 labeling→
We need to assign 
owners to vertices s.t.: 

● In each sub-simplex, 
each vertex belongs to 
a different owner.

● Friends are assigned to 
the same owner.

Does not work with the 
equilateral triangulation.



Fair Cake-Cutting / Erel Segal-Halevi 49

Step 1: n labelings  1 labeling→
We need to assign 
owners to vertices s.t.: 

● In each sub-simplex, 
each vertex belongs to 
a different owner.

● Friends are assigned to 
the same owner.

Lemma: it works with 
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Step 1: n labelings  1 labeling→
We need to assign 
owners to vertices s.t.: 

● In each sub-simplex, 
each vertex belongs to 
a different owner.

● Friends are assigned to 
the same owner.

Lemma: it works with 
barycentric triangulation
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Step 2: Permutation  Boundary degree→

Pref: Left Right Empty
F

12
1 2 3 Even

F
13

1 3 2 Odd

F
23

2 3 1 Even

Agent condition: Either:
(+) In each main-vertex i, the 
label is i, or:
(-) In each main-vertex i, the 
label can be anything but i.

Lemma: When n=3,    if labeling satisfies 
         permutation condition and agent condition,
         then labels on main vertices can be chosen such that:     
                   boundary-degree mod 3  <>  0.

Permutation condition: 
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Step 2: Permutation  Boundary degree→

Pref: Left Right Empty
F

12
1 2 3 Even

F
13

1 3 2 Odd

F
23

2 3 1 Even

Agent condition: Either:
(+) In each main-vertex i, the 
label is i, or:
(-) In each main-vertex i, the 
label can be anything but i.

Proof:

Permutation condition: 
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Step 2: Permutation  Boundary degree→

2 of 9 cases shown below:

Pref: Left Right Empty
F

12
1 2 3 Even

F
13

1 3 2 Odd

F
23

2 3 1 Even

Agent condition: Either:
(+) In each main-vertex i, the 
label is i, or:
(-) In each main-vertex i, the 
label can be anything but i.

Permutation condition: 
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Step 3:  Boundary degree = Interior degree

Definition: 
 Degree of labeling of an n-simplex in Rn-1

      = sign of determinant of affine transformation to Q
      = +1 if onto&no reflection, -1 if onto&one reflection,
           0 if not onto.
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Step 3:  Boundary degree = Interior degree

Definition: 
  Orientation of an (n-1)-simplex in Rn-1

      = one of its two adjacent half-spaces.
  Degree of labeling of an (n-1)-simplex in Rn-1

      = sign of determinant of any affine transformation 
         to Q that perserves the orientation. 
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Degree of  a labeling of an n-simplex in Rn-1,

    =  sum of degrees on each face oriented inwards:
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Degree of  a labeling of an n-simplex in Rn-1,

    =  sum of degrees on each face oriented inwards:

deg = 1
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Degree of  a labeling of an n-simplex in Rn-1,

    =  sum of degrees on each face oriented inwards:

deg = 1

deg = -1
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Degree of  a labeling of an n-simplex in Rn-1,

    =  sum of degrees on each face oriented inwards:

deg = 1

deg = -1

deg = -1+1
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Degree of  a labeling of an n-simplex in Rn-1,

    =  sum of degrees on each face oriented inwards:

deg = 1

deg = -1

deg = -1+1

deg = 0
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Step 3:  Boundary degree = Interior degree

Lemma: 
   Sum of degrees of simplices in triangulation
    =  sum of degrees on each boundary face,
        – since the internal faces cancel out:
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Step 3:  Boundary degree = Interior degree
Definition: degree of triangulation labeling 
                   = sum of degrees of each sub-simplex labeling.
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Step 3:  Boundary degree = Interior degree
Definition: degree of triangulation labeling 
                   = sum of degrees of each sub-simplex labeling.

Lemma: interior degree = sum of degrees on faces 
 = sum of degrees on faces of boundary = boundary degree.
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Conclusion

Step Proved for

1.    n agent-labelings with perm. condition 
    → Combined labeling with perm. condition

Any n

2. Permutation condition
    →Nonzero boundary degree

n = 3

3. Boundary degree
       = Interior degree

Any n (?)

Theorem: for 3 agents with continuous valuations,
                 an envy-free connected division exists
                 for arbitrary mixed valuations.
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Open question
Permutation condition for 4 or more agents:

Pref: Left Middle Right Empty
F

123
1 2 3 4 Even

F
124

1 2 4 3 Odd

F
134

1 3 4 2 Even

F
234

2 3 4 1 Odd

Conjecture: If labeling satisfies 
                     permutation condition and agent condition,
                     then boundary-degree mod n <> 0.
If conjecture is true, then connected envy-free division exists
                       for arbitrary mixed valuations!
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Open question
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Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
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Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
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Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
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Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
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Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
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