Fairly Dividing a Cake after Some Parts were Burnt in the Oven

Erel Segal-Halevi
Dividing a heterogeneous resource to agents with different preferences such that everyone’s share is “fair” by their preferences.
Fair Division — Then

Dividing a **heterogeneous** resource to agents with **different** preferences such that everyone’s share is "fair" by their preferences.

Steinhaus | Banach | Knaster | Dubins | Spanier
Dividing a heterogeneous resource to agents with different preferences such that everyone’s share is "fair" by their preferences.

http://fairoutcomes.com

http://spliddit.org

https://math.hmc.edu/su/fairdivision

Francis Su's Fair Division Page

Click on The Fair Division Calculator which has recently been updated! (version 3.01, 4/12/00)

A java applet for interactive decision making to find envy-free divisions of goods, burdens, or rent.
Dividing a heterogeneous resource to agents with different preferences such that everyone’s share is “fair” by their preferences.
Dividing a heterogeneous resource to agents with different preferences such that everyone’s share is “fair” by their preferences.
Continuous Resource
Continuous Resource

Cake = Interval $[0,1]$. n agents. Value-densities $\nu_i : Cake \rightarrow \mathbb{R}$

Value = integral:

$$V_i(X_i) = \int_{X_i} \nu_i(x) \, dx$$
Continuous Resource

Cake = Interval $[0,1]$.
n agents. Value-densities $v_i : Cake \rightarrow \mathbb{R}$
Value = integral:
$$V_i(X_i) = \int_{X_i} v_i(x) \, dx$$
Continuous Resource

Cake = Interval $[0,1]$.

n agents. Value-densities $v_i : \text{Cake} \rightarrow \mathbb{R}$

Value = integral:

$$V_i(X_i) = \int_{X_i} v_i(x) \, dx$$

Fairness (envy-freeness): For all i, j: $V_i(X_i) \geq V_i(X_j)$

For all i: X_i is connected.
Continuous Resource

Cake = Interval $[0,1]$. n agents. Value-densities $\nu_i : Cake \rightarrow \mathbb{R}$

Value = integral:

$$V_i(X_i) = \int_{X_i} \nu_i(x) \, dx$$

Fairness (envy-freeness): For all i, j: $V_i(X_i) \geq V_j(X_j)$

For all i: X_i is connected.

Easy for 2 agents. Difficult for 3 or more.
Valuation types

All positive - solved by Stromquist (1980), Simmons (1980)
Valuation types

All positive - solved by Stromquist (1980), Simmons (1980)

All negative – solved by Su (1999)
Valuation types

All positive - solved by Stromquist (1980), Simmons (1980)

All negative – solved by Su (1999)

General – this work.
Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents:
\[(l_1, l_2, l_3)\]
\[l_1 + l_2 + l_3 = 1\]
Partition for 3 agents:

$$(l_1, l_2, l_3)$$

$$l_1 + l_2 + l_3 = 1$$
Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents:
\[(l_1, l_2, l_3)\]
\[l_1 + l_2 + l_3 = 1\]

Envy-free division =

\[F_1 = (1, 0, 0)\]
\[F_2 = (0.1, 0)\]
\[F_3 = (0, 0.1)\]
Simplex of Partitions – Definition
(based on Stromquist 1980)

Partition for 3 agents:
\[(l_1, l_2, l_3) \]
\[l_1 + l_2 + l_3 = 1 \]

Envy-free division = point in which each agent prefers a different piece.
Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.
a. Triangulate the simplex.

b. Assign each vertex to a different agent such that in each sub-simplex, all agents are represented.
Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.

b. Assign each vertex to a different agent such that in each sub-simplex, all agents are represented.

c. Ask each agent to label all its vertices by the index of his favorite piece.
Simplex of Partitions – Triangulation
(based on Simmons 1980, Su 1999)

a. Triangulate the simplex.

b. Assign each vertex to a different agent such that in each sub-simplex, all agents are represented.

c. Ask each agent to label all its vertices by the index of his favorite piece.

d. A simplex labeled by all n labels = an approximately-envy-free division.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.

Lemma (Sperner 1929): When each face is labeled only with the labels of its endpoints, a fully-labeled sub-simplex exists.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.

Lemma (Sperner 1929): When each face is labeled only with the labels of its endpoints, a fully-labeled sub-simplex exists.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.

Lemma (Sperner 1929): When each face is labeled only with the labels of its endpoints, a fully-labeled sub-simplex exists.

Corollary: when all valuations are positive, an approximately-envy-free division exists.
Fact: When all agents have positive valuations, each face is labeled only with the labels of its endpoints.

Lemma (Sperner 1929): When each face is labeled only with the labels of its endpoints, a fully-labeled sub-simplex exists.

Corollary: when all valuations are positive, an approximately-envy-free division exists.

Corollary (Stromquist 1980, Simmons 1980, Su 1999): when valuations are also continuous, an envy-free division exists.
Fact: When all agents have negative valuations, it is possible to label the n main vertices such that each face is labeled only with the labels of its endpoints.
Fact: When all agents have negative valuations, it is possible to label the n main vertices such that each face is labeled only with the labels of its endpoints.

Corollary: When all valuations are negative, an approximately-envy-free division exists.
Fact: When all agents have negative valuations, it is possible label the n main vertices such that each face is labeled only with the labels of its endpoints.

Corollary: when all valuations are negative, an approximately-envy-free division exists.

Corollary (Su 1999): when valuations are also continuous, an envy-free division exists.
In general, the conditions for Sperner’s lemma are **not** satisfied.

What can we do?
Boundary Permutation Condition
Definition: Two vertices in the simplex are called *friends* if they have the same ordered list of non-zero coordinates.
Definition: Two vertices in the simplex are called friends if they have the same ordered list of non-zero coordinates.

Fact: Each agent’s labelings on friends are same up to permutation:
Boundary Permutation Condition

Definition: Two vertices in the simplex are called *friends* if they have the same ordered list of non-zero coordinates.

Fact: Each agent’s labelings on friends are same up to permutation:

<table>
<thead>
<tr>
<th>Pref:</th>
<th>Left</th>
<th>Right</th>
<th>Empty</th>
<th>Even/Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{12})</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Even</td>
</tr>
<tr>
<td>(F_{13})</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>Odd</td>
</tr>
<tr>
<td>(F_{23})</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>Even</td>
</tr>
</tbody>
</table>

![Diagram showing friends and labelings](image)
Degree of Labeling

Labeling ≡ mapping from triangulation vertices to vertices of Q (follows Musin 2014)
Degree of Labeling

Labeling \equiv mapping from triangulation vertices to vertices of Q (follows Musin 2014)

Degree of mapping $=$ net number of rounds ($CCW=positive$).
Labeling \equiv mapping from triangulation vertices to vertices of Q
(follows Musin 2014)

Degree of Labeling

Degree of mapping = net number of rounds (CCW=positive).

Lemma: degree on boundary = degree in interior.
Steps in Existence Proof

<table>
<thead>
<tr>
<th>Step</th>
<th>Proved for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. n agent-labelings with permutation condition \rightarrow Combined labeling with permutation condition</td>
<td>Any n</td>
</tr>
<tr>
<td>2. Permutation condition \rightarrow Nonzero boundary degree</td>
<td>$n = 3$</td>
</tr>
<tr>
<td>3. Boundary degree $= \text{Interior degree}$</td>
<td>Any n (?)</td>
</tr>
</tbody>
</table>
Step 1: n labelings \rightarrow 1 labeling

We need to assign owners to vertices s.t.:

- In each sub-simplex, each vertex belongs to a different owner.
- Friends are assigned to the same owner.

Does not work with the equilateral triangulation.
Step 1: n labelings \rightarrow 1 labeling

We need to assign owners to vertices s.t.:

- In each sub-simplex, each vertex belongs to a different owner.
- Friends are assigned to the same owner.

Lemma: it works with *barycentric triangulation*
Step 1: n labelings \rightarrow 1 labeling

We need to assign owners to vertices s.t.:

- In each sub-simplex, each vertex belongs to a **different** owner.

- Friends are assigned to the **same** owner.

Lemma: it works with *barycentric triangulation*
Step 1: \(n \) labelings \(\rightarrow \) 1 labeling

We need to assign owners to vertices s.t.:

- In each sub-simplex, each vertex belongs to a **different** owner.
- Friends are assigned to the **same** owner.

Lemma: it works with *barycentric triangulation*
Step 2: Permutation → Boundary degree

Permutation condition:

<table>
<thead>
<tr>
<th>Pref:</th>
<th>Left</th>
<th>Right</th>
<th>Empty</th>
<th>Agent condition: Either: (+) In each main-vertex i, the label is i, or: (-) In each main-vertex i, the label can be anything but i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{12}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>$Even$</td>
</tr>
<tr>
<td>F_{13}</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>Odd</td>
</tr>
<tr>
<td>F_{23}</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>$Even$</td>
</tr>
</tbody>
</table>

Lemma: *When* $n=3$, if labeling satisfies *permutation condition* and *agent condition*, then labels on main vertices can be chosen such that: boundary-degree mod 3 $\neq 0$.

Fair Cake-Cutting / Erel Segal-Halevi 52
Step 2: Permutation → Boundary degree

Permutation condition:

<table>
<thead>
<tr>
<th>Pref: F_{12}</th>
<th>Left</th>
<th>Right</th>
<th>Empty</th>
<th>Agent condition: Either: (+) In each main-vertex i, the label is i, or: (-) In each main-vertex i, the label can be anything but i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pref: F_{13}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Proof:</td>
</tr>
<tr>
<td>Pref: F_{23}</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Agent condition:

$\text{deg} = 3k + 1$
Step 2: Permutation → Boundary degree

Permutation condition:

<table>
<thead>
<tr>
<th>Pref:</th>
<th>Left</th>
<th>Right</th>
<th>Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{12})</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(F_{13})</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(F_{23})</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Agent condition: Either:

(+) In each main-vertex \(i \), the label is \(i \), or:

(-) In each main-vertex \(i \), the label can be anything but \(i \).

2 of 9 cases shown below:

\[
\text{deg} = (3k) - 2/3 - 1/3 = 3k - 1 \quad \text{deg} = (3k - 1) - 1/3 + 1/3 = 3k - 1
\]
Step 3: Boundary degree = Interior degree

Definition:

Degree of labeling of an n-simplex in R^{n-1}
= sign of determinant of affine transformation to Q
= +1 if onto&no reflection, -1 if onto&one reflection, 0 if not onto.
Step 3: Boundary degree = Interior degree

Definition:

Orientation of an \((n-1)\)-simplex in \(R^{n-1}\)
= one of its two adjacent half-spaces.

Degree of labeling of an \((n-1)\)-simplex in \(R^{n-1}\)
= sign of determinant of any affine transformation to \(Q\) that preserves the orientation.

\[\text{deg}(f_1) = +1 \]
\[\text{deg}(f_2) = -1 \]
Step 3: Boundary degree = Interior degree

Lemma:
Degree of a labeling of an \(n \)-simplex in \(\mathbb{R}^{n-1} \),
\[= \text{sum of degrees on each face oriented } \text{inwards}: \]
Step 3: Boundary degree = Interior degree

Lemma:
Degree of a labeling of an n-simplex in \mathbb{R}^{n-1}, $= \sum$ of degrees on each face oriented *inwards*:

$$\deg = 1$$
Step 3: Boundary degree = Interior degree

Lemma:
Degree of a labeling of an n-simplex in R^{n-1},
= sum of degrees on each face oriented *inwards*:

\[
\text{deg} = \begin{cases}
1 & \text{for orientation inward} \\
-1 & \text{for orientation outward}
\end{cases}
\]
Step 3: Boundary degree = Interior degree

Lemma:
Degree of a labeling of an n-simplex in R^{n-1}, $\deg = \sum$ of degrees on each face oriented *inwards*:
Step 3: Boundary degree = Interior degree

Lemma:
Degree of a labeling of an n-simplex in \mathbb{R}^{n-1}, equal to the sum of degrees on each face oriented inwards:

- $\text{deg} = 1$
- $\text{deg} = -1 + 1$
- $\text{deg} = -1$
- $\text{deg} = 0$
Lemma:
Sum of degrees of simplices in triangulation
= sum of degrees on each boundary face,
– since the internal faces cancel out:
Step 3: Boundary degree = Interior degree

Definition: degree of triangulation labeling

= sum of degrees of each sub-simplex labeling.
Step 3: Boundary degree = Interior degree

Definition: degree of triangulation labeling
= sum of degrees of each sub-simplex labeling.

Lemma: interior degree = sum of degrees on faces
= sum of degrees on faces of boundary = boundary degree.
Conclusion

<table>
<thead>
<tr>
<th>Step</th>
<th>Proved for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. n agent-labelings with perm. condition</td>
<td>Any n</td>
</tr>
<tr>
<td>\rightarrow Combined labeling with perm. condition</td>
<td></td>
</tr>
<tr>
<td>2. Permutation condition</td>
<td>$n = 3$</td>
</tr>
<tr>
<td>\rightarrow Nonzero boundary degree</td>
<td></td>
</tr>
<tr>
<td>3. Boundary degree = Interior degree</td>
<td>Any n (?)</td>
</tr>
</tbody>
</table>

Theorem: for 3 agents with continuous valuations, an envy-free connected division exists for arbitrary mixed valuations.
Open question

Permutation condition for 4 or more agents:

<table>
<thead>
<tr>
<th>Pref:</th>
<th>Left</th>
<th>Middle</th>
<th>Right</th>
<th>Empty</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{123}</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Even</td>
</tr>
<tr>
<td>F_{124}</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>Odd</td>
</tr>
<tr>
<td>F_{134}</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>Even</td>
</tr>
<tr>
<td>F_{234}</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>Odd</td>
</tr>
</tbody>
</table>

Conjecture: If labeling satisfies

permutation condition and *agent condition*,
then boundary-degree mod n <> 0.

If conjecture is true, then connected envy-free division exists for arbitrary mixed valuations!
Open question
Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)
Dividing Goods that are Bads
(Midrash Rabba, Genesis 33:1)