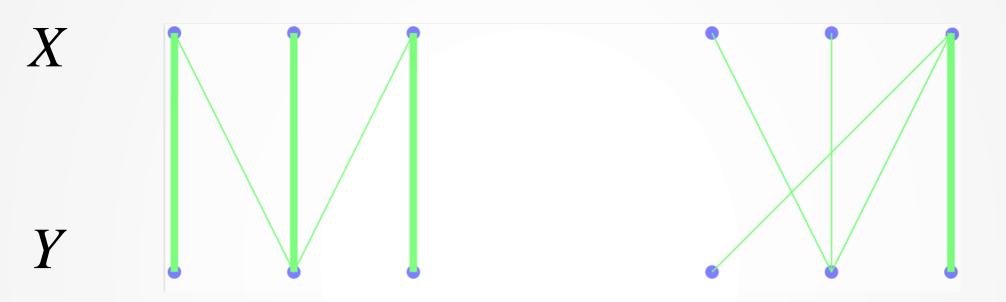
Envy-Free Matchings in Bipartite Graphs and their Applications to Fair Division

EREL SEGAL-HALEVI

JOINT WORK WITH

ELAD AIGNER-HOREV

Perfect vs. Envy-Free Matching



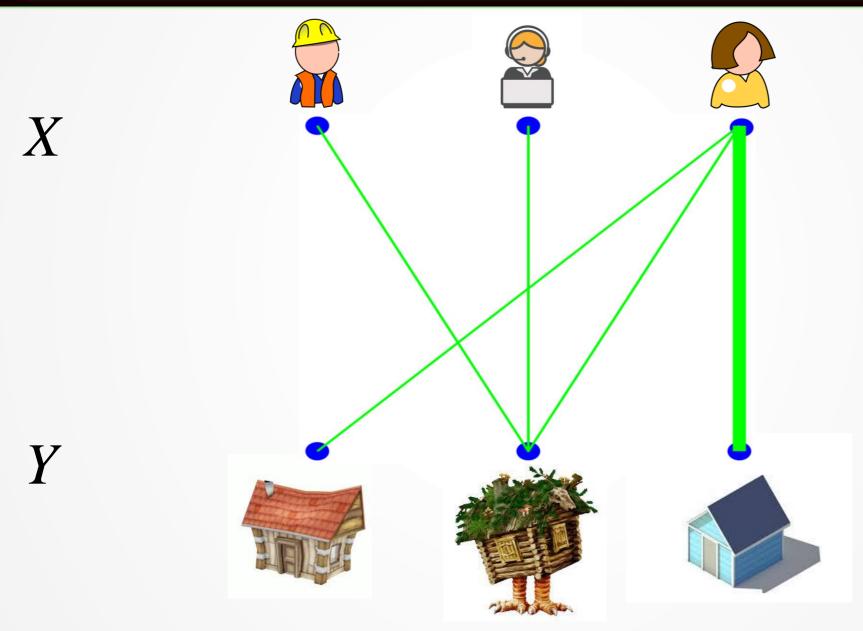
X-saturating matching:

Every vertex of *X* is matched.

Envy-free matching:

Every unmatched vertex of X is disconnected from any matched vertex of Y.

Envy-Free Matching: Metaphor



Envy-free Matchings in Bipartite Graphs

Erel Segal-Halevi & Elad Aigner-Horev

Question. Does an EFM always exist?

Question. Does an EFM always exist?

Answer. Yes – the empty-matching is EF.

Question. Does an EFM always exist?

Answer. Yes – the empty-matching is EF.

Question 2. Does a non-empty EFM always exist?

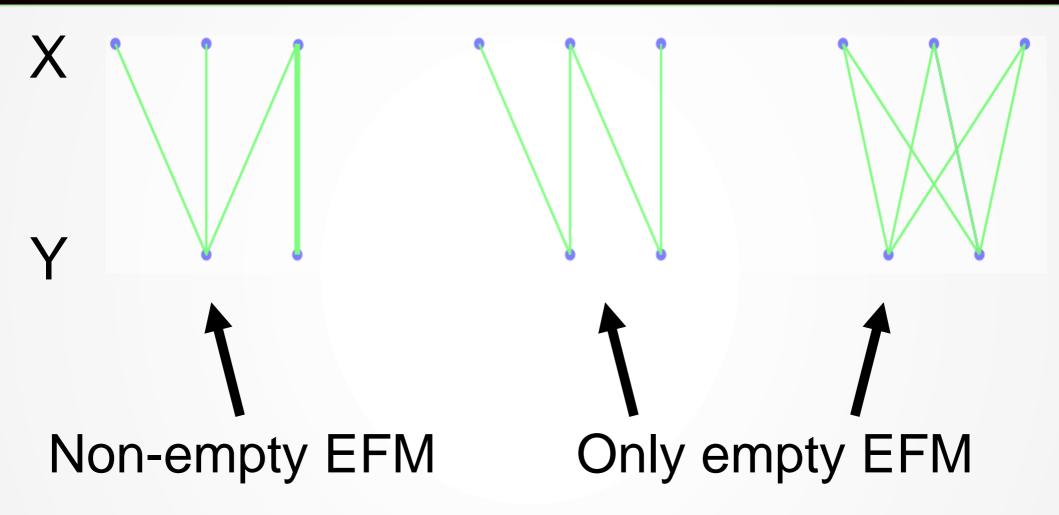
Question. Does an EFM always exist?

Answer. Yes – the empty-matching is EF.

Question 2. Does a non-empty EFM always exist?

Answer 2. No \rightarrow

Non-empty vs. empty EFM



Questions

- 1) Theory: What characterizes the graphs that admit a non-empty EFM?
- 2) Computation: How can we find an EFM of maximum size?

3) Application: What can we do with the unmatched vertices?

1. EFM and graph structure

Two extreme types of bipartite graphs:

- X-saturated: largest possible EFM.
- Odd path: only an empty EFM.

Theorem 1 (informal).

- Every G has a unique decomposition:
 - G := X-saturated + "Odd-path-like".
- Every EFM in G is contained in the X-saturated part.

1. EFM and graph structure

Definition. $G = (X \cup Y, E)$ is *odd-path-like* if, for some $k \ge 1$, there exist partitions

$$X = X_0 \sqcup X_1 \sqcup \cdots \sqcup X_k$$
$$Y = Y_1 \sqcup \cdots \sqcup Y_k$$

such that for all $i \ge 1$

- X_i is perfectly matchable to Y_i ;
- Every vertex in Y_i is adjacent to a vertex in X_{i-1} .

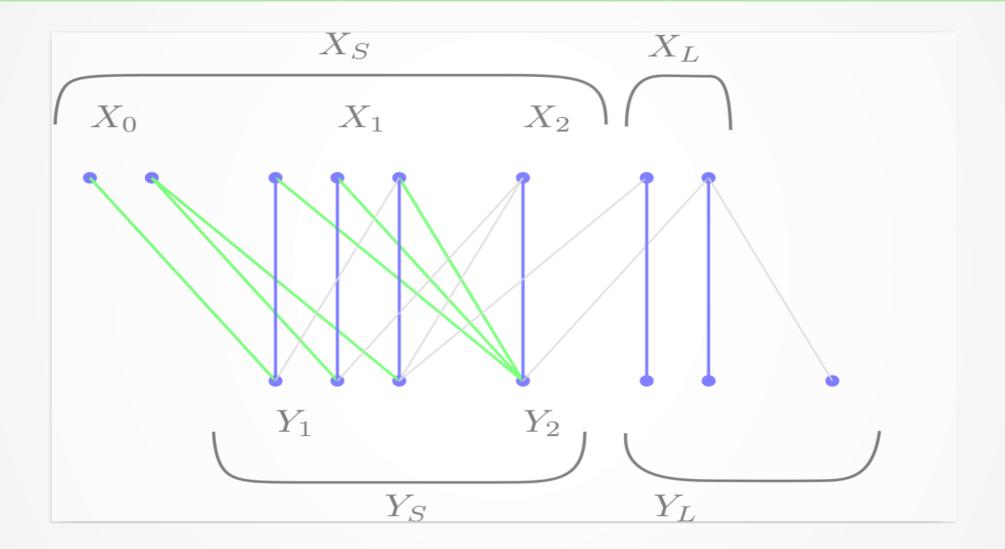
1. EFM and graph structure

Theorem 1. Every bipartite $G = (X \cup Y, E)$ admits unique partitions

$$X = X_S \cup X_L$$
 $Y = Y_S \cup Y_L$

- With the following properties:
- a) No edges between X_S and Y_L ;
- b) $G[X_S, Y_S]$ is odd-path-like;
- c) $G[X_L, Y_L]$ is X-saturated. Moreover:
- d) Every X-sat. matching in $G[X_L, Y_L]$ is EFM
- e) Every EFM in G is contained in $G[X_L, Y_L]$.

Theorem 1: Example



Theorem 1: Construction

- Take a maximum-size matching M.
- Let X₀ be the unmatched vertices in X.
- Construct a sequence of vertex subsets:

$$X_0 - Y_1 - X_1 - Y_2 - X_2 - \dots -$$

where:

$$\bullet Y_i = \mathbf{N}_{G \setminus M}(X_{i-1}) \setminus \bigcup_{j < i} Y_j;$$

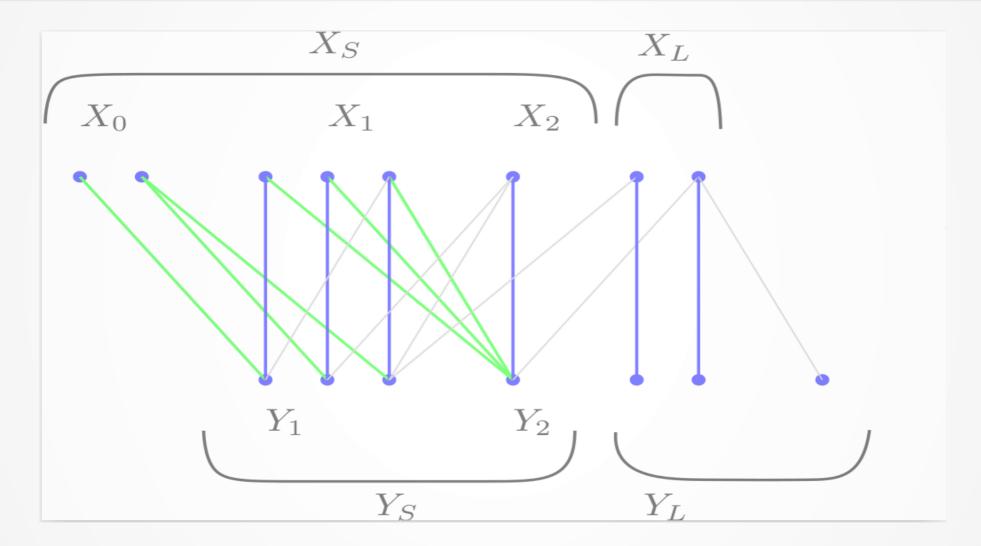
$$\bullet X_i = \mathbf{N}_M(Y_i)$$

• Let
$$X_S = \text{Union of } X_i$$
 , $Y_S = \text{Union of } Y_i$, $X_L = X - X_S$, $Y_L = Y - Y_S$

Envy-free Matchings in Bipartite Graphs

Erel Segal-Halevi & Elad Aigner-Horev

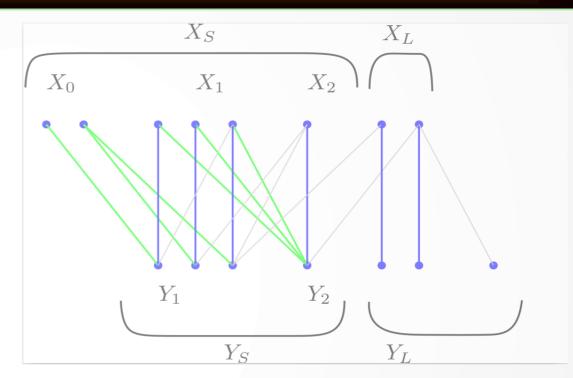
Theorem 1: Construction



M =blue vertical lines

Decomposition:

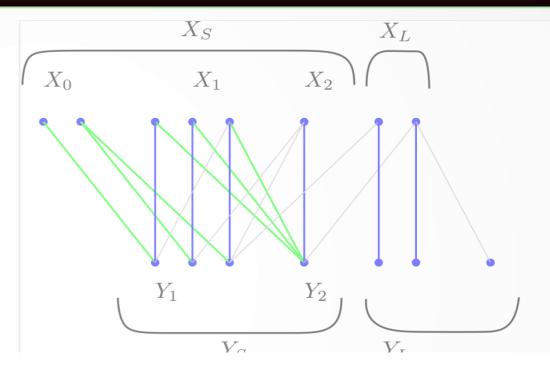
$$X_S$$
, Y_S = in sequence;
 X_L , Y_L = the leftovers.



Properties:

- a) No edges between X_S and Y_L ;
- b) $G[X_S, Y_S]$ is odd-path-like (construction ends at X side);
- c) $G[X_I, Y_I]$ is X-saturated (by edges of M).

Lemma. For any decomposition $G[X_S, Y_S] + G[X_L, Y_L]$ that satisfies properties (a),(b),(c):

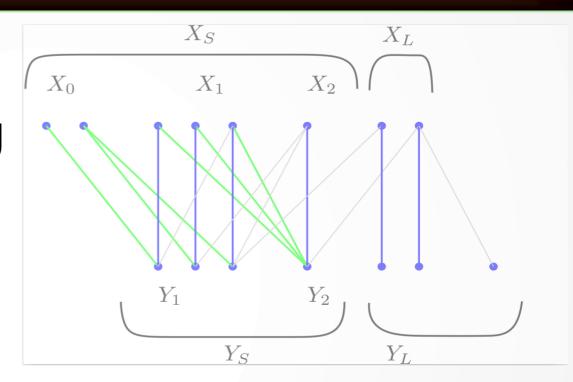


- (d) Every X-saturating matching in $G[X_L, Y_L]$ is envy-free in G.
- (e) Every envy-free matching in G is contained in $G[X_I, Y_I]$.

Proof of (d).

Given an X-saturating matching in $G[X_L, Y_L]$:

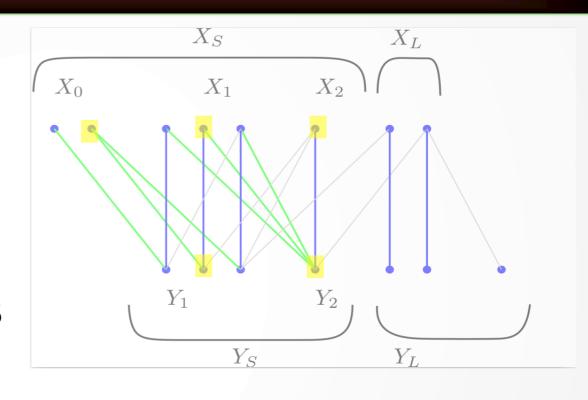
- Vertices of X_L do not envy since they are saturated.
- Vertices of X_S do not envy since by
 (a) they are not connected to Y_L.



→ The matching is envy-free in *G*.

Proof of (e). Given an envy-free matching *W* in *G*:

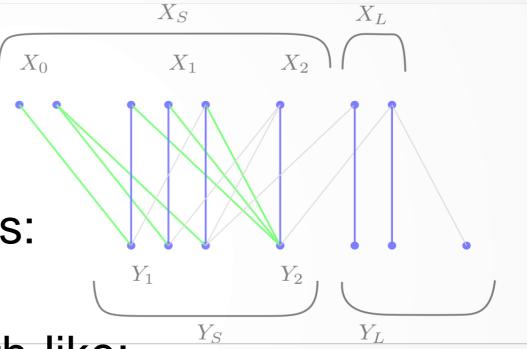
• i := smallest indexs.t. a vertex in Y_i is matched by W.



- By (b), vertices of $Y_{\geq i}$ are perfectly matched. Their matches in $X_{\geq i}$ must be matched by W.
- At least one more vertex in X_{i-1} must be matched by W.
 → Contradiction.

1 (proof): Uniqueness

[Theorem 1] there is a x_0 unique decomposition $G[X_S, Y_S] + G[X_L, Y_L]$ satisfying the properties:



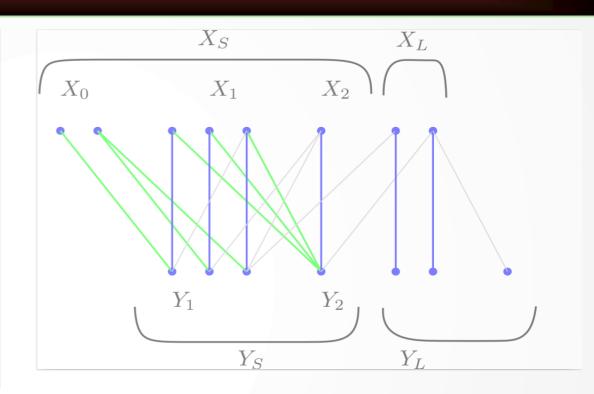
- a) No edges $X_S Y_L$;
- b) $G[X_S, Y_S]$ is odd-path-like;
- c) $G[X_L, Y_L]$ is X-saturated.
- **Proof**. Take any $G[X'_S, Y'_S] + G[X'_L, Y'_L]$.
- There is an EFM saturating X'_L , so $X'_L \subseteq X_L$.
- There is an EFM saturating X_L , so $X_L \subseteq X'_L$.

2. Algorithm for max-size EFM

- 1.Find a max-size matching *M*.
- 2.Construct the decomposition

$$X_L, Y_L, X_S, Y_S.$$

3. Return $M[X_L, Y_L]$.



Correctness proof.

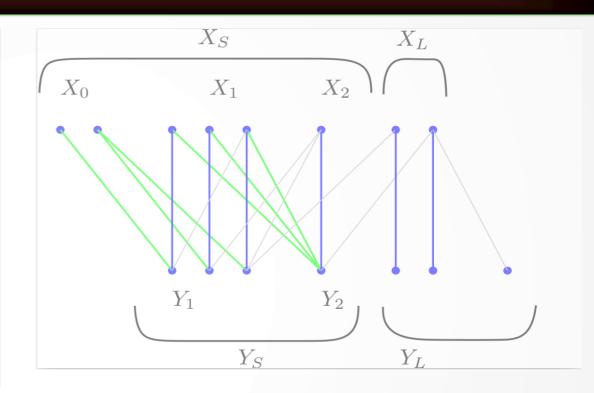
- By property (d), $M[X_L, Y_L]$ is an EFM.
- By property (e), there is no larger EFM.

2. Algorithm for max-size EFM

- 1.Find a max-size matching *M*.
- 2.Construct the decomposition

$$X_L, Y_L, X_S, Y_S.$$

3. Return $M[X_L, Y_L]$.



Extension.

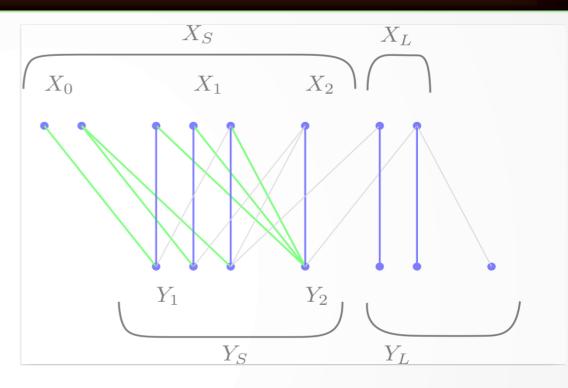
- If each edge is endowed with a cost:
 - We can find a max-size min-cost EFM.

2. Algorithm for max-size EFM

- 1.Find a max-size matching *M*.
- 2.Construct the decomposition

$$X_L, Y_L, X_S, Y_S.$$

3. Return $M[X_L, Y_L]$.



Corollary. $|N_G(X)| \ge |X| \ge 1 \to G$ has nonempty EFM.

Proof. It is sufficient to prove: $|X_L| \ge 1$.

- Case 1: $|X_0|=0$. Then $X_S=\emptyset$ so $X_L=X$ so $|X_L|\ge 1$.
- Case 2: $|X_0| > 0$. Then $|X_S| > |Y_S| = |N_G(X_S)| \rightarrow X_S \neq X \rightarrow /X_L/ \geq 1$.

Envy-free Matchings in Bipartite Graphs

Erel Segal-Halevi & Elad Aigner-Horev

3. Applications for fair division

EFM can be used as a subroutine in various fair division problems:

- (a) Fair *cake-cutting* dividing a heterogeneous continuous resource;
- (b) Fair *object allocation* allocating discrete objects.

3 a. EFM in cake-cutting

INPUT:

- "Cake" a heterogeneous divisible resource (e.g. land, time);
- Some *n* agents with different valuations (non-atomic measures) over the cake.

OUTPUT:

• Each agent gets a piece that he values as at least 1/n of the entire cake.

For 2 agents: cut-and-choose.

3 a. EFM in cake-cutting

ALGORITHM ("Lone Divider", Kuhn 1967):

- 1. Normalize cake value to n.
- 2. A (remaining) agent cuts n pieces worth 1.
- 3. Construct a bipartite graph G[X,Y] with:
 - * X = agents;
 - * Y = pieces;
 - * edge iff agent values piece at least 1.
- 4. Find in G[X,Y] a maximum-size EFM.
- 5. Give each matched piece to its agent.
- 6. Update n; if $n \ge 1$ go back to step 2.

3 a. EFM in cake-cutting

Proof of correctness.

- 4. $|N_G(X)| \ge |X| \ge 1 \rightarrow G$ has nonempty EFM.
- 5. Matched agents value their piece at ≥1. Unmatched agents value given pieces at <1.
- 6. The unmatched n-k agents value the remaining cake at > n-k.

INPUT:

- Some discrete objects (e.g. house, car);
- Some n agents with different valuations (additive set functions) over the objects.

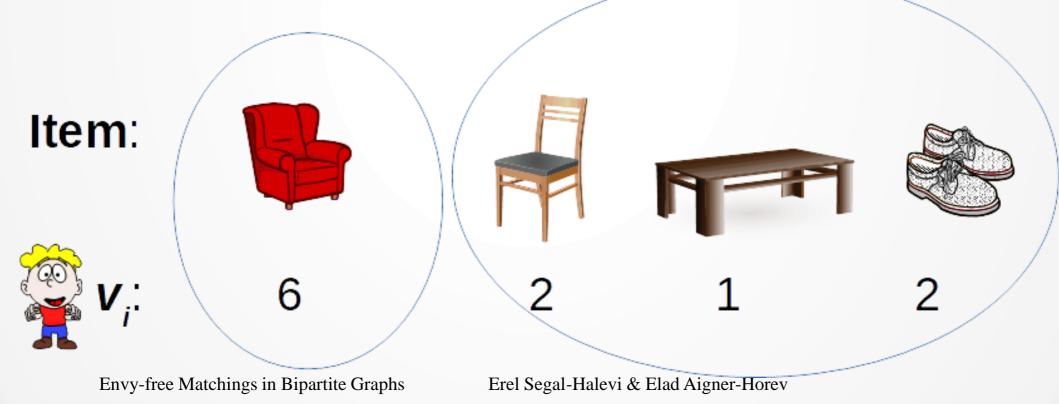
OUTPUT:

 Each agent gets a bundle worth for him at least his "1-out-of-n maximin-share" →

Maximin share

1-of-c maximin-share (MMS): the value an agent can get by partitioning the objects into c piles and getting the worst pile.

Example: for c=2, the 1-of-c MMS of i is 5:



INPUT: Discrete objects and *n* additive agents. **OUTPUT**: 1-out-of-*n* MMS division.

- For 2 agents cut-and-choose.
- For 3 or more agents may not exist (Procaccia & Wang 2014).
- 1-out-of-(n+1) MMS division open problem.
- 1-out-of-(2n-2) MMS division next slide \rightarrow

ALGORITHM:

- 1. Normalize 1-out-of-(2n-2) MMS to 1.
- 2. A remaining agent makes n bundles worth ≥ 1 .
- 3. Construct a bipartite graph G[X,Y] with:
 - * X = agents;
 - * Y = bundles;
 - * edge iff agent values bundle at least 1.
- 4. Find in G[X,Y] a maximum-size EFM.
- 5. Give each matched bundle to its agent.
- 6. Update n; if $n \ge 1$ go back to step 2.

Proof of correctness.

- 4. $|N_G(X)| \ge |X| \ge 1 \rightarrow G$ has nonempty EFM.
- 5. Matched agents value their bundle at ≥1. Unmatched agents value given bundles at <1.
- 6. Technical lemma: Each of the unmatched n-k agents can divide the remaining objects into n-k bundles worth at least 1. ***

A similar algorithm can find an algorithm for:

- 2-out-of-(3n-2) MMS allocation;
- (l-1)-out-of-(ln-2) MMS allocation, for any l;
- 2/3-fraction 1-out-of-n MMS allocation;
- An individual criterion for each agent.

Future Work

- 1. Envy-free one-to-many matchings:
 - A vertex x in X is "envious" iff another vertex in X is matched to more vertices in Y that are adjacent to x.
- 2. Approximately-envy-free matchings:
 - A vertex x in X is "envious" iff at least k
 of his neighbors in Y are matched.
- 3. 1-out-of-(n+1) MMS allocation ?

Acknowledgments

Zur Luria Yuval Filmus Thomas Klimpel

Thank you for coming ©