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Notation

The following table can serve as a quick reference for notation used throughout

the thesis. For detailed formal definitions, see the model, in Chapter 2 on the

following page.

Notation Meaning

d dimensions. Usually d = 2 since we divide a two-dim. resource.

C Cake, the thing that should be divided fairly. A subset of Rd.

R upper bound on length/width Ratio of a geometric object.

S Set of pieces that are considered usable, e.g. squares, R-fat objects.

T number of reflex verTexes of a rectilinear polygon.

n number of agents (people) entitled to receive a piece.

i index of an agent. i ∈ {1, . . . , n}.
vi value-density of agent i; function from C to R.

Vi Value-measure of agent i (integral of vi).

VS
i Utility-function of agent i who can use only pieces from S.

Xi piece of cake allocated to agent i.

X cake allocation; n pairwise-disjoint pieces: X = (X1, . . . , Xn).

Y, Z alternative allocations.

Prop(C, S, n) Proportionality function; see Chapter 3.

PropEF(C, S, n) Envy-free-proportionality function; see Chapter 4.



Abstract

This research presents algorithms for fair division of land. The algorithms take as

input a heterogeneous land-estate, and several people with different preferences

over parts of the land-estate. They return as output a partition of the land-estate

among the people, such that each person agrees that his/her share is “fair”.

The baseline of this research is the classic problem of fair cake-cutting. There

are many algorithms that take as input a heterogeneous cake and several people

with different tastes, and give each person a piece the he/she considers “fair”.

However, these algorithms cannot be directly applied to fair division of land,

since land is not a cake. There are several differences between land and cake, and

they require new fair division algorithms.

The first difference is geometry. When a cake is divided, the geometric shape

of the pieces is usually ignored. It is often assumed that the cake is a one-dimensional

interval and that the pieces are sub-intervals or finite collections thereof. In con-

trast, when land is divided, the two-dimensional geometric shape of the pieces is

of crucial importance. We present fair division algorithms that can handle multi-

dimensional geometric constraints on the pieces. In particular, we present algo-

rithms that guarantee that each piece is a square, a fat rectangle (a rectangle with a

bounded length/width ratio) or an arbitrary fat object. We give upper and lower

bounds on the degree of “fairness” (the value guarantee per agent) as a function

of the geometric constraints.

The second difference is redivision. A cake is usually divided when it is fresh

and new, so that no people have a previous claim on it. In contrast, many land-

resources are already divided, and it is often required to re-divide them, as in a

land-reform. We present algorithms for fair re-division, which balance the own-

ership rights of existing land-owners and the fairness claims of landless citizens.

i



We first present a baseline algorithm for redivision without geometric constraints.

Then, we combine the redivision model with the geometry model and present a

redivision algorithm that can also handle one-dimensional and two-dimensional

geometric constraints.

The redivision algorithms have implications on another important issue in

fair division — the trade-off between fairness and efficiency. Our redivision al-

gorithms allow us to prove upper bounds on the price-of-fairness — the loss of

efficiency due to fairness considerations — with geometric constraints.

The third difference is group ownership. A piece of cake is usually eaten by

a single person. In contrast, a plot of land is usually owned by a group, such as

a family or a community. Different family members may have different prefer-

ences. We present algorithms for fair division that respect the different tastes of

group-members.

While the primary focus of this research is land division, the concepts intro-

duced herein are applicable in other division problems. Geometric considerations

are relevant when dividing other two-dimensional resources, such as advertise-

ment space in print or electronic media. Redivision considerations are relevant in

other dynamic division problems, such as dividing computation resources among

processes. Group ownership considerations are relevant also in the classic eco-

nomic setting of dividing homogeneous resources among families. We believe the

present research will enrich the general fair division literature by adding these

new considerations.

ii



Chapter 1

Introduction

1.1 The Land Problem

This research has been motivated by a pressing social problem — the rising prices

of housing in Israel. Israeli youth find it more and more difficult to afford a house,

and this problem is largely related to their inability to own land.1

Land division is not only a problem of the present. It has been an important

issue since Biblical times. This is evident from the commandment to divide the

land of Israel among the tribes in proportion to their size (Numbers 26:53-54),

through the protests of the prophets against unfair land allocation (e.g. Isaiah

5:8), to the latter-day prophecies describing a futuristic fair land division (e.g.

Ezekiel 47:14).

Land division is, of course, not only an Israeli problem. It has been an im-

portant issue all around the globe. Fair division of land has been the goal of nu-

merous land reforms carried out in all five continents throughout history.2 The

earliest recorded land-reform attempts were done by Egyptian king Bakenranef

in 8th century BC (Powelson, 1988). The latest such attempt was done by the

Scottish government in 2016 AD.3

1This is illustrated by the fact that people who own land can build a home in less than
one year of labor (MarkerWeek 14.7.2013, http://www.themarker.com/markerweek/1.2069919),
in contrast to over 8 years that are required to buy a house without owning land (Calcalist
26.02.15, http://www.calcalist.co.il/real estate/articles/0,7340,L-3653354,00.html . See also Biz-
Portal 4.4.2013 http://www1.bizportal.co.il/article/356140). Retrieved 21.11.16.

2See the Wikipedia page “Land reforms by country” for more details
3Land Reform (Scotland) Act 2016, http://www.gov.scot/Topics/Environment/land-reform

retrieved 21.11.16
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1.2 The Fair Division Solution

This research studies fair division of land from the perspective of a computer

scientist. Its goal is to develop algorithms for fair division of land. The input to

such an algorithm is a land-estate that has to be divided among several people.

The goal is that all people agree that the division is “fair”. When I tell people

about this goal, their immediate reply is:

That’s impossible! Different people have different tastes. Some peo-

ple might claim that a fair division should give each person access to

the road; others might claim that that you must give each person the

same area of seashore; yet others might claim that you should give each

person the same probability of finding oil; there are as many opinions

as there are people. How can you hope to find a division that will be

conceived as fair by everyone?

They are quite surprised when I tell them the following 4-word algorithm:

I cut.

You choose.

This algorithm is so simple, that it is even used by children to divide a birthday-

cake. 4 It does not require any details about the land. It does not need to know

the location of the road, nor the amount of seashore, nor the probability of find-

ing oil, nor any other particular feature of the land. It can be implemented by any

two people on their own — they do not have to employ an expert (and expensive)

real-estate assessor.

Despite its simplicity, this algorithm can be called “fair”. To see why it is fair,

suppose first that the cutter divides the land to two pieces that are equal in his

eyes, and that the chooser chooses the piece that is better in his eyes. The resulting

division has two properties:

4This algorithm is already alluded to in the Bible (Genesis 13:9): when Abraham and Lot
wanted to divide the land of Canaan between them, Abraham suggested a division of the land
to two parts, and let Lot be the first to choose his part. See Isaac Dov Paris, ”fairness and justice
in dividing property” (Hebrew), http://www.daat.ac.il/mishpat-ivri/skirot/143-2.htm retrieved
21.11.16.
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1. Each person receives a piece that is worth at least 1/2 of the total value,

according to his own taste. This property is called proportionality.

2. Each person receives a piece that is at least as good as the other piece, ac-

cording to his own taste. This property is called envy-freeness.5

What happens if one of the participants does not follow the rules? In that case,

the division is still “fair” for the other participant. For example, if the cutter

“breaks the rules” by cutting the cake to two unequal pieces, then the chooser

can still follow the rules and pick the piece that is better in his eyes, so his piece

is still worth at least 1/2 of the total value and at least as much as the other piece.

Similarly, if the chooser breaks the rules by choosing the piece that is worse in his

eyes, then the cutter (who followed the rules) still receives a piece that is worth

exactly 1/2 of the total value and exactly the same as the other piece. When

you use this algorithm, you receive a personal fairness guarantee, that does not

depend on what the other person does: as long as you keep the rules, you are

guaranteed a fair share.

Proportionality and envy-freeness are two very natural definitions of fairness,

so it is nice that such a simple algorithm “I cut, you choose” can guarantee both

of them.

The success of the “I cut, you choose” algorithm for two people naturally in-

vokes the question: what happens when there are more than two people? The

first person to ask this question was the Jewish-Polish mathematician Hugo Stein-

haus. After World War II, he posed this question to two of his students, Banach

and Knaster. They developed an algorithm that finds a proportional division for n

people. Steinhaus published their algorithm (Steinhaus, 1948). This publication

initiated a new field of research, that is now called: fair division.

Since then, the fair division problem has been studied by many researchers

from different disciplines: mathematicians, economists, computer scientists and

political scientists. Each discipline has brought its own questions and answers.

Some of the interesting questions are: how can we find an envy-free division for

n people? What is the runtime complexity of fair division (how many queries are
5When there are two people and the entire land is divided, proportionality and envy-freeness

are equivalent. This is not the case when there are more than two people or when some of the
land is left undivided, so these two properties are independent.
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required)? What happens if some of the items to divide are indivisible? What if

the items have negative value (like a piece of lawn that has to be mowed)? What

are the strategic properties of fair division algorithms, when they are viewed as

competitive games? Is it possible to attain a fair division that is also economically

efficient? What if people have different entitlements? What if there are externalities

between the agents? What if the agents can form coalitions? And so on (see the

Related Work section below for some references).

A particularly exciting recent development is the launching, in 11/2014, of

the non-profit website Spliddit.6 This website lets visitors apply state-of-the-art

fair division algorithms to their own problems. So far, it has been used by tens of

thousands of visitors (Goldman and Procaccia, 2015), demonstrating the practical

usefulness of fair division algorithms.

1.3 Applying Fair Division to Land

In the world of fair division, there are many different kinds of problems, depend-

ing on whether the resources to divide are homogeneous or heterogeneous, divis-

ible or indivisible, and so on. We are interested of fair division of land, which is

heterogeneous and divisible. The sub-field of fair division that handles heteroge-

neous and divisible resources is called fair cake-cutting. This uses the metaphor of

Steinhaus (1948), of cutting a birthday cake among several siblings with different

tastes. Indeed, many researchers explicitly mention land division as an important

application of fair cake-cutting (e.g. Berliant and Raa, 1988; Berliant et al., 1992;

Legut et al., 1994; Chambers, 2005; Dall’Aglio and Maccheroni, 2009; Hüsseinov,

2011; Nicolò et al., 2012).

However, the cake metaphor might be misleading. Land is not a cake, and in-

deed existing cake-cutting algorithms have several shortcomings that make them

impractical for division of land. This is the main motivation for the present re-

search. Our goal is to develop new division algorithms, that handle the consider-

ations that are important in land division.

We focus on three topics — three main differences between cakes and lands.

6http://www.Spliddit.org
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1. Geometry. When a cake is divided, the geometric shape of the pieces is

usually ignored. It is often assumed that the cake is a one-dimensional inter-

val and that the pieces are sub-intervals or finite collections thereof. In contrast,

when land is divided, the two-dimensional geometric shape of the pieces is of

crucial importance. This work extends the cake-cutting model to handle multi-

dimensional cakes. It presents fair division algorithms that can handle multi-

dimensional geometric constraints on the pieces. Due to its length, this part is

divided to two chapters:

• Chapter 3 focuses on the simpler fairness requirement — proportionality —

each agent is guaranteed a piece worth for him at least a given fraction of

the total cake value. It presents algorithms that guarantee that the pieces

are squares or fat rectangles (rectangles with a balanced length/width ratio).

• Chapter 4 adds the second fairness requirement — envy-freeness — each

agent is guaranteed a piece worth for him at least as much as any other

piece. It presents algorithms that guarantee that the pieces are squares or

fat rectangles, but can also handle more general geometric constraints such

as arbitrary fat pieces.

An interesting aspect of this work is the combination of different disciplines: com-

puter science, geometry and economics. Indeed, parts of this work have appeared

in preliminary forms in the AAAI 2015 conference (Segal-Halevi et al., 2015a) and

EuroCG 2016 conference, and are now under revision for the Journal of Mathe-

matical Economics.

2. Redivision. A cake is usually divided when it is fresh and new, so that no

people have a previous claim on it. In contrast, many land-resources are already

divided, and it is often required to re-divide them, as in a land-reform. In Chapter

5 we present algorithms for fair re-division, which balance the rights of existing

land-owners and those of new landless citizens. We first present a baseline algo-

rithm for redivision without geometric constraints. Then, we combine the redivi-

sion model with the geometry model and present a redivision algorithm that can

also handle one-dimensional and two-dimensional geometric constraints.
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The redivision algorithms have implications on another important issue in

fair division — the trade-off between fairness and efficiency. Our redivision al-

gorithms allow us to prove upper bounds on the price-of-fairness — the loss of

efficiency due to fairness considerations — with geometric constraints.

3. Family ownership. A piece of cake is usually eaten by a single person. In

contrast, a plot of land is usually owned by a group, such as a family or a com-

munity. Different family members may have different preferences. In Chapter 6

we present algorithms for fair division that respect the different tastes of group

members.

While the primary focus of this research is land division, the concepts intro-

duced herein are applicable in other division problems. Geometric considera-

tions are relevant when dividing other two-dimensional resources, such as ad-

vertisement space in print or electronic media. Redivision considerations are

relevant in other dynamic division problems, such as dividing computation re-

sources among processes. Group ownership considerations are relevant also in

the classic economic setting of dividing homogeneous resources among families.

We believe the present research will enrich the general fair division literature by

adding these new considerations.

1.4 Related Work

Fair division has greatly evolved since the days of Steinhaus, with hundreds of

research papers and several books (Brams and Taylor, 1996; Robertson and Webb,

1998; Moulin, 2004; Barbanel, 2005; Brams, 2007). A comprehensive survey of this

literature is beyond the scope of this work, but to illustrate the diversity of the fair

division research, we present some of its questions below.

1. A long-standing open question was how to find an envy-free cake-cutting for

n people. The Banach-Knaster algorithm from the forties guarantees a division

that is proportional but not necessarily envy-free. Envy-free division turned out
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to be much more difficult. It was solved only in the nineties. Three different algo-

rithms find an envy-free division with disconnected pieces in finite but unbounded

time (Brams and Taylor, 1995; Robertson and Webb, 1998; Pikhurko, 2000). A

fourth algorithm finds an envy-free division with connected pieces but in infinite

time.

2. Computer scientists have been mainly interested in the computational complex-

ity of cake-cutting:

• How many queries are required to find a proportional cake-cutting? The

Banach-Knaster algorithm uses O(n2) queries, but a later algorithm by Even

and Paz (1984) requires only O(n log n) queries. Moreover, recent results by

Edmonds and Pruhs (2006b); Woeginger and Sgall (2007) show that this is

asymptotically optimal.

• How many queries are required for envy-free cake-cutting? Stromquist (2008)

proved that an infinite number of queries may be required when the pieces

are connected; Procaccia (2009) proved that Ω(n2) queries may be required

when pieces may be disconnected. Gasarch (2015) presented a comparison

among the three unbounded procedures for envy-free fair division. Very

recently, Aziz and Mackenzie (2016) published the first bounded-time al-

gorithm for envy-free cake-cutting (with disconnected pieces). Their algo-

rithm requires nnnnnn

queries, much more than the upper bound of n2, so

there is still a lot of room for improvement. We made a modest contribution

to this line of research by presenting quicker algorithms for envy-free cake-

cutting, with either connected or disconnected pieces, when it is allowed to

leave some cake unallocated (Segal-Halevi et al., 2015b).

3. The strategic aspects of cake-cutting have attracted the attention of researchers

in algorithmic mechanism design:

• Are there fair cake-cutting algorithms that are also truthful, meaning that

an agent always receives the highest possible value by playing according

to his true valuations? “I cut, you choose” is not truthful, since an agent

who knows the other agent’s preferences may get a better piece by playing
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untruthfully. This will not damage the fairness guarantee to the other agent,

but it might encourage the agents to spy on each other, which is undesirable.

Recently, Chen et al. (2013); Aziz and Ye (2014) showed truthful algorithms

for the special cases in which the agents’ valuations are piecewise-uniform

or piecewise-constant. In contrast, Brânzei and Miltersen (2015) showed that

in the general case, every truthful query-based algorithm might give one

of the agents a worthless piece, so there is a fundamental conflict between

truthfulness and fairness.

• What happens when agents can not only lie about their preferences, but also

create duplicates? Tsuruta et al. (2015) study the notion of false-name-proof

mechanisms for cake-cutting.

• How do agents behave when they play a non-truthful cake-cutting algo-

rithm? Is there a Nash equilibrium, and what are its properties? Brânzei

et al. (2016) present a framework for studying this question and give some

answers.

4. Economists have been mainly interested in the economic efficiency of cake-

cutting:

• The fundamental definition of economic efficiency is Pareto-efficiency — there

is no allocation which is better for one person and not worse for another

one. Varian (1974) proved that, under fairly general conditions, there exists

a Pareto-efficient and envy-free division of homogeneous resources. Weller

(1985) proved a similar resource for a cake — a heterogeneous resource.

Barbanel (2005) presented alternative proofs. Reijnierse and Potters (1998)

showed how to (approximately) find a Pareto-efficient envy-free cake divi-

sion. These results give each agent a disconnected piece. If each agent must

get a connected piece, then an envy-free and Pareto-efficient division might

not exist (Stromquist, 2007). What if each agent may get a union of two

connected pieces? This question is still open.

• Another measure of economic efficiency is the social welfare — usually de-

fined as the sum of utilities of all agents (Bentham, 1789; Mill, 1863). It is
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possible to calculate an allocation that approximates the maximum welfare

(Aumann et al., 2013), but this allocation might not be fair. In contrast, a

fair allocation might have a low social welfare. This invokes the question

of what is the “price of fairness” — how much does society have to pay,

in terms of welfare, for the different fairness requirements? Aumann and

Dombb (2015) and Caragiannis et al. (2012) and Arzi (2012) study this ques-

tion in various settings. Finally, Cohler et al. (2011); Bei et al. (2012) show

how to calculate an allocation with optimal social welfare subject to fairness

requirements.

5. What happens when there are indivisible items? The “I cut, you choose”

algorithm assumes that the cake can always be divided to halves without losing

value, but what if there are houses or trees, that cannot be divided? The papers

on this topic are far too many to mention; see Bouveret et al. (2016) for a recent

survey.

6. What happens when different agents have different entitlements? McAvaney

et al. (1992) and Robertson and Webb (1995) present some solutions, but they re-

quire a large number of cuts; it is still open whether such weighted-fair divisions

can be found using a smaller number of cuts.

7. What happens when there are externalities, i.e, the utility of an agent depends

on the pieces allocated to other agents? See Brânzei et al. (2013). What happens

when agents can cooperate and form coalitions before the division process? See

Dall’Aglio et al. (2009).

In each of the following chapters, we present work that is more closely related

to that chapter.
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Chapter 2

Model

This chapter presents general definitions and notations that are applicable in all

following chapters. Each of the following chapters will contain additional defini-

tions and notations specific to that chapter.

2.1 Cake

The object that should be divided is called a cake, and denoted by C. In the cake-

cutting literature, it is often assumed that C is a one-dimensional interval. In

this work, we will usually assume that C is a polygon in the Euclidean plane R2,

but we will also consider more general cakes that are objects in a d-dimensional

Euclidean space Rd.

Pieces of C are Borel subsets of C — the subsets that can be formed from open

subsets through the operations of countable union, countable intersection, and

relative complement.

2.2 Agents

The people among whom the cake should be divided are called agents. There are

n agents, where n ≥ 1.

Each agent i ∈ {1, . . . , n} has a value-density function vi, which is a real,

integrable, bounded and non-negative function on C. Value-density functions

are common in real-estate assessments, for example, it is common to say that
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“in neighborhood X, the house prices are $2000 per square meter.” However,

it should be emphasized that each agent has a personal value-density function,

that need not be related to the market prices. Different agents may have different

value-density functions; this is what makes the fair division problem interesting.

The value of a piece Xi to agent i is marked by Vi(Xi) and it is the integral of

its value-density:

Vi(Xi) =
∫

x∈Xi

vi(x)dx

Even when C is unbounded, we assume that the vi have finite support — they are

nonzero only in a bounded subset of C. Hence the Vi are always finite.

The definition implies that the Vi are measures. In particular, they are count-

ably additive: when a piece is divided to parts (even countably many parts), the

value of the piece equals the sum of the values of its parts.

Moreover, the definition implies that the Vi measures are absolutely continuous

with respect to the Lebesgue measure, i.e., any piece with zero Lebesgue measure

(length, area, etc.) has zero value to all agents. This implies, in particular, that

from any piece with a value of V, we can cut a sub-piece with a value of α · V,

for any fraction α ∈ [0, 1]. This assumption is already implicitly made by the

“I cut, you choose” algorithm — it assumes that the cutter can cut the cake into

two pieces with a value of exactly half the original value. Now we have a formal

model that justifies this assumption.

2.3 Queries

The division protocols access the value measures via queries (Robertson and Webb,

1998): an eval query asks an agent to reveal its value for a specified piece of cake;

a mark query asks an agent to mark a piece of cake with a specified value.

In this work, we ignore strategic considerations and assume that all agents an-

swer truthfully. As usual in the cake-cutting literature since Steinhaus (1948), the

fairness guarantees of our algorithms are valid for every single agent answering

the queries truthfully, regardless of the behavior of the other agents. This is the
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common practice in the cake-cutting world.1

However, our protocols are not dominant-strategy-truthful, i.e, an agent may

gain by answering untruthfully. Designing dominant-strategy-truthful mecha-

nisms for cake-cutting is known to be a difficult problem even in one dimension

(Brânzei and Miltersen, 2015).

2.4 Allocations

An allocation is a vector of n pieces, X = (X1, . . . , Xn), one piece per agent, such

that the Xi are pairwise-disjoint and contained in C. We express the latter two

facts succinctly using the “disjoint union” operator, t :

X1 t · · · t Xn ⊆ C

The above definition implies that some cake may remain unallocated, i.e, free

disposal is assumed. This is a reasonable assumption in land division: it is usually

allowed, and often even desired, to leave some public lands unallocated.

2.5 Fairness

There are two common definitions of fairness. Both of them are natural gener-

alizations of the guarantees of the “I cut, you choose” protocol described in the

introduction.

1. Proportionality. Traditionally, a division X is called proportional if each

agent receives at least 1/n of the total cake value, according to its personal valu-

ation:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥ Vi(C)/n

1In the words of Steinhaus (1948): “The greed, the ignorance, and the envy of other partners
cannot deprive him of the part due to him in his estimation; he has only to keep to the methods
described above. Even a conspiracy of all other partners with the only aim to wrong him, even
against their own interests, could not damage him.”
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In this work, we will often have to relax the proportionality requirement and

require partial-proportionality.

Definition 2.5.1. The proportionality of a division X is defined as the largest value

p such that:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥ p ·Vi(C)

Equivalently, the proportionality of X is:

Prop(X) :=
n

min
i=1

Vi(Xi)/Vi(C)

By this definition, X is proportional if-and-only-if Prop(X) ≥ 1/n.

2. Envy-freeness A division X is called envy-free if each agent receives at least

as much as any other agent, according to its personal valuation. Formally:

Definition 2.5.2. A division X is called envy-free if

∀i, j ∈ {1, . . . , n} : Vi(Xi) ≥ Vi(Xj)

2.6 Geometry

The geometric constraints on the pieces (if any) are represented by a set of usable

pieces, which is denoted by S. For example, S may be the family of intervals,

rectangles or squares. An element of S is called an S-piece. We assume that each

agent can use only a single S-piece.2 An allocation X where for every i, Xi ∈ S, is

called an S-allocation.

Based on the value measures Vi and the geometric family S, the fair land divi-

sion problem can be formulated in two equivalent ways.

1. Geometry is an external restriction. The division algorithms must return only

S-allocations. So, for example, an envy-free land-division algorithm should give

each agent i an S-piece Xi such that ∀i, j : Vi(Xi) ≥ Vi(Xj).

2If we want to allow each agent to use e.g. two squares, then we can just define S to be the
family of all square-pairs. So the assumption of one S-piece per agent does not lose generality.
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2. Geometry is a part of the agents’ utility functions. An agent can derive utility

only from an S-piece; when his allotted land-plot is not an S-piece, he selects

the most valuable S-piece contained therein and utilizes it. For each agent i, we

define the S-value function, which assigns to each piece Xi the value of the most

valuable usable piece contained in it:

VS
i (Xi) = sup

s∈S , s⊆Xi

Vi(s)

Now, the division algorithms may return any allocation, but the fairness guaran-

tees are judged according to the agents’ S-value functions. So, for example, an

envy-free land-division algorithm should give each agent i a piece Xi such that

∀i, j : VS
i (Xi) ≥ VS

i (Xj). Note that, in contrast to the Vi that are measures, the

VS
i are usually not measures since they are not additive. This means that cake-

cutting algorithms that require additivity cannot be used.

The above two formulations are equivalent and we will use them interchange-

ably.

Fatness

In land division, it is often preferred that the pieces will have a balanced length/width

ratio — not too long in one dimension and too short in another dimension. This

preference is captured by the the concept of fatness, which we adapt from the

computational geometry literature, (e.g. Agarwal et al., 1995; Katz, 1997):

Definition 2.6.1. Let R ≥ 1 be a real number. A d-dimensional piece is called

R-fat, if it contains a d-dimensional cube B− and is contained in a parallel d-

dimensional cube B+, such that the ratio between the side-lengths of the cubes

is at most R: len(B+)/len(B−) ≤ R.

A 2-dimensional cube is a square. So, for example, the only 2-dimensional 1-

fat shape is a square. An L× 1 rectangle is L-fat, a right-angled isosceles triangle

is 2-fat and a circle is
√

2-fat (see Figure 2.1).

Note that R is an upper bound, so if R2 ≥ R1, every R1-fat piece is also R2-fat.

So a square is also e.g. 2-fat and 3-fat, but a 10-by-20 rectangle is not 1-fat.
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1 fat 2 fat 2 fat
√

2 fat

3 fat

Figure 2.1: Fatness of several 2-dimensional geometric shapes. The dashed square
is the largest contained cube; the dotted square is the smallest containing parallel
cube. The shape is R-fat if the ratio of the side-lengths of these squares is at most
R.
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This chapter was presented in the EuroCG 2016 conference and is now under revision for

the Journal of Mathematical Economics.

3.1 Introduction

In many cake-cutting papers, it is assumed that the cake is a one-dimensional

interval and the pieces are sub-intervals. This assumption is usually justified

by the reasoning that higher-dimensional settings can always be projected onto

one dimension, and hence fairness in one dimension implies fairness in higher

dimensions.1 However, projecting back from the one dimension, the resulting

two-dimensional plots are thin rectangular slivers, of little use in most practical

applications; it is hard to build a house on a 10× 1, 000 meter plot even though its

area is a full hectare, and a thin 0.1-inch wide advertisement space would ill-serve

most advertises regardless of its height.

We claim that the two-dimensional shape of the allotted piece is of prime im-

portance. Hence, we seek divisions in which the allotted pieces must be of some

1In the words of Woodall (1980): ”the cake is simply a compact interval which without loss of
generality I shall take to be [0,1]. If you find this thought unappetizing, by all means think of a
three-dimensional cake. Each point P of division of my cake will then define a plane of division
of your cake: namely, the plane through P orthogonal to [0,1]”.
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(a) Two disjoint rectangles worth 1/2 (b) Two disjoint squares worth 1/4

(c) No two disjoint squares worth more than 1/4

Figure 3.1: With geometric constraints, a proportional allocation might not exist.

restricted family of “usable” two-dimensional shapes, e.g. squares or polygons

of balanced length/width ratio.

Adding a two-dimensional geometric constraint re-opens most questions and

challenges related to cake-cutting. Indeed, even the elementary proportionality

criterion can no longer be guaranteed.

Example 3.1.1. A homogeneous square land-estate has to be divided between two

heirs. Each heir wants to use his share for building a house with as large an area

as possible, so the utility of each heir equals the area of the largest house that fits

in his piece (see Figure 3.1). If the houses can be rectangular, then it is possible

to give each heir 1/2 of the total utility (a); if the houses must be square, it is

possible to give each heir 1/4 of the total utility (b) but impossible to give both

heirs more than 1/4 the total utility (c). In particular, when the allotted pieces

must be square, a proportional division does not exist.2

This example invokes several questions. What happens when the land-estate

is heterogeneous and each agent has a different utility function? Is it always

possible to give each agent a 2-by-1 rectangle worth for him at least 1/2 the total

2Berliant and Dunz (2004) use a very similar example to prove the nonexistence of a competi-
tive equilibrium when the pieces must be square.
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value? Is it always possible to give each agent a square worth for him at least

1/4 the total value? Is it even possible to guarantee a positive fraction of the

total value? If it is possible, what division procedures can be used? How does

the answer change when there are more than two agents? Such questions are the

topic of the present chapter.

We use the term proportionality to describe the fraction that can be guaranteed

to every agent. So when the shape of the pieces is unrestricted, the proportion-

ality is always 1/n, but when the shape is restricted, the proportionality might

be smaller. Naturally, the attainable proportionality depends on both the shape

of the cake and the desired shape of the allotted pieces. For every combination

of cake shape and piece shape, one can prove impossibility results (for proportion-

ality levels that cannot be guaranteed) and possibility results (for the proportion-

ality that can be guaranteed). While we examined many such combinations, the

present chapter focuses on several representative scenarios which, in our opinion,

demonstrate the richness of the two-dimensional cake-cutting task.

Walls and unbounded cakes

In Example 3.1.1, the two pieces had to be contained in the square cake. One can

think of this situation as dividing a square island surrounded in all directions by

sea, or a square land-estate surrounded by 4 walls: no land-plot can overlap the

sea or cross a wall.

In practical situations, land-estates often have less than 4 walls. For example,

consider a square land-estate that is bounded by sea to the west and north but

opens to a desert to the east and south. Allocated land-plots may not flow over

the sea shore, but they may flow over the borders to the desert.

Cakes with less than 4 walls can also be considered as unbounded cakes.

For example, the above-mentioned land-estate with 2 walls can be considered

a quarter-plane. The total value of the cake is assumed to be finite even when

the cake is unbounded. When considering unbounded cakes, the pieces are al-

lowed to be “generalized squares” with an infinite side-length. For example,

when the cake is a quarter-plane (a square with 2 walls), we allow the pieces

to be squares or quarter-planes. When the cake is a half-plane (a square with 1
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wall), we also allow the pieces to be half-planes, etc. The terms “square with 2

walls” and “quarter-plane” are used interchangeably throughout the chapter.

3.1.1 Results

Our results can be broadly summarized as follows.

• Negative results: when the pieces have to be squares or fat rectangles, a

proportional division is usually 3 not guaranteed to exist. Moreover, there

is a small constant A > 1 that depends on the shape of the cake and usable

pieces, such that the largest value that can be guaranteed to all agents is

1/(A · n).

• Positive results: when the pieces have to be squares or fat rectangles, a

constant-factor approximation to a proportional division is usually guaran-

teed to exist: there is a small constant B > 1 that depends on the shape of

the cake and usable pieces, such that all agents can be guaranteed a value

of at least 1/(B · n).

The constant A in our negative results is at most 2, and the constant B in our

positive results is at least 2; this leads us to conjecture that the ”real” constant

is 2, i.e, a half-proportional division with square pieces always exists, and half-

proportionality is the best that can be guaranteed. Currently we can prove this

conjecture only in several restricted scenarios, that are presented below.

Square cakes bounded or unbounded

In the first set of results, the cake is a square bounded in zero or more sides. Table

3.1 summarizes our negative and positive results:

The Impossibility column shows upper bounds on the attainable proportion-

ality. Each upper bound is proved by showing a specific scenario in which it is

impossible to give all agents more than the mentioned fraction of their total value.

The upper bound for a square with 4 walls and n = 2 is 1/(2n) = 1/4, as was

3We have proved this for most, but not all the cases that we have studied. The exception is
when the cake is an unbounded plane and the pieces are non-parallel squares: in this case, we do
not know whether a proportional division always exists. See Table 3.1 below.
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Cake ↓ Impossibility Possibility

Square pieces
R-Fat rects

(R ≥ 2) Square pieces
R-Fat rects

(R ≥ 2)

4 walls
(Square) 1/(2n) * 1/(2n− 1)

1/(4n− 4) *
same: 1/(2n) *

1/(4n− 5)
same: 1/(2n− 1)

3 walls 1/(2n− 1) 1/(2n− 1)

2 walls
(quarter-plane) 1/(2n− 1) 1/(2n− 1)

1 wall
(half-plane) 1/( 3

2 n− 1) 1/(2n− 2)

0 walls
(plane)

axes-parallel: 1/( 10
9 n− 1) 1/ max(2n− 4, n)

parallel: 1/( 30
29 n− 1)

general: ? ?

Table 3.1: Summary of results for square cakes: upper and lower bounds on the
level of attainable absolute proportionality.
All results assume that there are at least two agents (n ≥ 2).
* means that the results are valid not only for square pieces but also for R-fat
rectangles with R < 2.
? means that we do not have a non-trivial impossibility result for this case .

already seen in Example 3.1.1. The upper bounds for an unbounded plane are

valid only when the pieces must be squares parallel to a pre-specified coordinate

system, or parallel to each other (as is common in urban planning). The other

upper bounds are valid even when the squares are allowed to be non-parallel.

The Possibility column shows our positive results. Each such result is proved

constructively by an explicit division procedure that gives each agent at least the

mentioned fraction of their total value. The same result means that there exists a

different division procedure that guarantees a larger fraction per agent, but this

procedure works only when all agents have the same valuations. We do not know

whether there exists a division procedure that guarantees this larger fraction for

agents with different valuations.

Note that all our impossibility results hold even for agents with the same val-

uations, and all our division procedures return axes-parallel pieces.

Intuitively, one may think that allowing rectangles instead of just squares

should considerably increase the attainable proportionality level. But this is not

the case if the pieces need to be fat. As seen in the table, most results for fat rect-

angles are almost the same as for squares. The only exception is the impossibility
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result for an unbounded plane, which we have not managed to extend to R-fat

rectangles.

For n = 2, the proportionality levels in our possibility results are equal to the

impossibility results. For a cake with two or three walls the guaranteed propor-

tionality is equal to the impossibility result for every n. This means that in these

cases, our procedures are optimal in their worst-case guarantee. For a cake with

4 walls, the guaranteed proportionality for agents with the same value measure

is optimal. In the other cases, there is a multiplicative gap of at most 2 between

the possibility and the impossibility result.

A secondary consideration in geometric division problems, in addition to

value, is the type of cuts used for implementing the division. In some cases,

guillotine cuts are preferred. Guillotine cuts are axis-parallel cuts running from

one end to the opposite end of an already cut piece. They are considered easier

to implement (e.g. AlvarezValdes, 2002; Cui et al., 2008; Hifi et al., 2011). In the

industry, guillotine cuts are used for cutting stock such as plates of glass. In the

context of land division, guillotine cuts may be desired because they may make it

easier to build fences between land-plots. Our procedures for a cake with 4 walls

find divisions that can be implemented using guillotine cuts. The other proce-

dures use general cuts, and we do not know if it is possible to attain the same

value guarantees using guillotine cuts.

Bounded cakes of any shape

While some states in the USA are rectangular (e.g. Colorado or Wyoming), most

land-estates have irregular shapes. In such cases, it may be impossible to guaran-

tee any positive proportionality. For example, consider Robinson Crusoe arriving

at a circular island. Assume that Robinson’s value measure is such that all value

is concentrated in a very thin strip along the shore, as in Figure 3.2. The value

contained in any single square might be arbitrarily small. Clearly, no division

procedure for n agents can guarantee a better fraction of the total value.

Therefore, for arbitrary cakes we use a relative rather than absolute fairness

measure. For each agent, we calculate the maximum value that this agent can

attain in a square piece if he doesn’t need to share the cake with other agents. We
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Figure 3.2: A circular cake where all value is near the perimeter. No positive
value can be guaranteed to an agent who wants a square piece.

Pieces ↓ Impossibility Possibility

Parallel
squares 1/(2n)

1/(8n− 6)
same: 1/(2n)

General
squares 1/(2n)

1/(16n− 14)
same: 1/(2n)

Parallel
R-fat rectangles 1/(2n− 1)

1/([4R + 4][n− 1] + 2)
same: 1/(2n)

Table 3.2: Summary of results for arbitrary compact cakes: upper and lower
bounds on the level of attainable relative proportionality.

guarantee the agent a certain fraction of this value, rather than a certain fraction

of the entire cake value. This fairness criterion is similar to the uniform prefer-

ence externalities criterion suggested by Moulin (1990b). Similar criteria have been

recently studied in the context of indivisible item assignment (Budish, 2011; Pro-

caccia and Wang, 2014; Bouveret and Lemaı̂tre, 2015).

Table 3.2 summarizes our bounds on relative proportionality. The impossi-

bility results follow trivially from those for square cakes. The possibility results

require new division procedures. They are valid for any cake that is a compact

(closed and bounded) subset of the plane. The guarantees are better when the

pieces are required to be axis-parallel. This is in accordance with the common

practice in urban planning, in which axis-parallel plots are usually preferred.
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3.1.2 Techniques

Most of our division procedures can be presented as sequences of auctions.4 The

general process is as follows. Initially, each of the n agents receives a ticket with

an entitlement to share a certain cake, C, in a group of n agents. Then, the di-

vider performs a well-designed sequence of auctions. In each auction, the win-

ning agents exchange their ticket for another ticket with an entitlement to share

a smaller cake C′ ⊂ C in a smaller group of n′ < n agents. This goes on until

finally each agent holds a private entitlement for a single piece of the cake. Note

that there are no monetary payments: the winners ’pay’ only by giving away

their tickets.

We use auctions of two types: mark auction and eval auction.5 They are pre-

sented briefly below; formal definitions and detailed examples are given in Sec-

tion 3.4.

• In a mark auction, each agent bids by marking a piece of cake. All bids must

satisfy a given geometric constraint (such as ”mark a square at the bottom-

left corner”). An agent bidding a piece Xi is interpreted as saying ”I am

willing to give my ticket in exchange for Xi”. The agent bidding the smallest

piece is the winner. The winner receives his bid and goes home, while the

remaining agents continue to divide the remaining cake.

• In an eval auction, the divider specifies a piece C′ ⊂ C, and each agent bids

by declaring his/her evaluation of C′. An agent bidding a value V is inter-

preted as saying ”I am willing to give my ticket for sharing C in a group of

n, in exchange for a ticket for sharing C′ in a group of n′(V).”. Here n′ is

some weakly-increasing function of V that depends on the situation. The

agent or agents bidding the highest values are the winners, since they are

willing to share C′ with the largest number of other agents. The number of

winners is determined as the largest value n′ such that the n′ highest win-

4The relation between division procedures and auctions has already been mentioned by Brams
and Taylor (1996).

5The two auction types are analogous to the two query types — mark query and eval query —
used in the cake-cutting literature in computer science, e.g. Robertson and Webb (1998); Woegin-
ger and Sgall (2007). In fact, each mark/eval auction can be implemented by n mark/eval queries.
Therefore, all our division procedures require O(poly(n)) queries. We prefer to use auctions be-
cause their economic meaning is clearer.
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ners are willing to share C′ in a group of n′. These winners go on and divide

C′ among them, while the remaining n− n′ agents continue to compete on

C \ C′.

The geometric constraints are carefully designed in order to guarantee that the

final pieces are usable. A key geometric concept here is the cover number — the

minimum number of squares required to cover a given region. By making sure

that all sub-pieces have a sufficiently small cover-number, we ensure that they

can be divided effectively. See Section 3.4 for details.

3.1.3 Related work

Many authors regard land division as an important application of division proce-

dures (e.g. Berliant and Raa, 1988; Berliant et al., 1992; Legut et al., 1994; Cham-

bers, 2005; Dall’Aglio and Maccheroni, 2009; Hüsseinov, 2011; Nicolò et al., 2012).

Hence, they note the importance of imposing some geometric constraints on the

pieces allotted to the agents.

The most well-studied constraint is connectivity — each agent should receive

a single connected piece. The cake is usually assumed to be the one-dimensional

interval [0, 1] and the allotted pieces are sub-intervals (e.g. Stromquist, 1980; Su,

1999; Nicolò and Yu, 2008; Azrieli and Shmaya, 2014)). Several authors studied

a circular cake (Thomson, 2007; Brams et al., 2008; Barbanel et al., 2009), but it is

still a one-dimensional circle and the pieces are one-dimensional arcs.

The importance of the multi-dimensional geometric shape of the plots was

noted by several authors.

Hill (1983); Beck (1987); Webb (1990); Berliant et al. (1992) study the problem

of dividing a disputed territory between several bordering countries, with the

constraint that each country should get a piece that is adjacent to its border.

Berliant et al. (1992); Ichiishi and Idzik (1999); Dall’Aglio and Maccheroni

(2009) acknowledge the importance of having nicely-shaped pieces in resolving

land disputes. They prove that, if the cake is a simplex in any number of dimen-

sions, then there exists an envy-free and proportional partition of the cake into

polytopes. However, this proof is purely existential when the cake has two or
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more dimensions. Additionally, there are no restrictions on the fatness of the al-

located polytopes and apparently these can be arbitrarily thin triangles. Berliant

and Dunz (2004) studies the existence of competitive equilibrium with utility

functions that may depend on geometric shape; their nonwasteful partitions as-

sumption explicitly excludes fat shapes such as squares. Devulapalli (2014) stud-

ies a two-dimensional division problem in which the geometric constraints are

connectivity, simple-connectivity and convexity.

Iyer and Huhns (2009) describe a procedure for giving each agent a rectangu-

lar plot with an aspect ratio determined by the agent. Their procedure asks each

of the n agents to draw n disjoint rectangles on the map of the two-dimensional

cake. These rectangles are supposed to represent the “desired areas” of the agent.

The procedure tries to give each agent one of his n desired areas. However, it

does not succeed unless each rectangle proposed by an individual intersects at

most one other rectangle drawn by any other agent. If even a single rectangle of

Alice intersects two rectangles of George (for example), then the procedure fails

and no agent gets any piece.

In our model (see Section 3.2), the utility functions depend on geometry, which

makes them non-additive. They are not even sub-additive like in the models

of Maccheroni and Marinacci (2003); Dall’Aglio and Maccheroni (2005, 2009). 6

Previous papers about cake-cutting with non-additive utilities can be roughly

divided to two kinds: some (Berliant and Dunz, 2004; Sagara and Vlach, 2005;

Hüsseinov and Sagara, 2013) handle general non-additive utilities but provide

only pure existence results. Others (Su, 1999; Caragiannis et al., 2011; Mirchan-

dani, 2013) provide constructive division procedures but only for a 1-dimensional

cake. Our approach is a middle ground between these extremes. Our utility func-

tions are more general than the 1-dimensional model but less general than the ar-

bitrary utility model; for this class of utility functions, we provide both existence

results and constructive division procedures.

Besides fair division problems, geometric methods have been used in many
6Dall’Aglio and Maccheroni (2009) do not explicitly require sub-additivity, but they require

preference for concentration: if an agent is indifferent between two pieces X and Y, then he prefers
100% of X to 50% of X plus 50% of Y. This axiom is incompatible with geometric constraints: an
agent who wants square pieces will give away 100% of a 20× 10 rectangle, in exchange for 50%
of a 20× 20 square that is the union of two such rectangles. We are grateful to Marco Dall’Aglio
for his help in clarifying this issue.
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other economics problems,7 such as voting (Plott, 1967), trade theory and growth

theory (e.g. Johnson, 1971), tax burdens (Hines et al., 1995), social choice (Can-

tillon and Rangel, 2002), mechanism design (Goeree and Kushnir, 2011), public

good/bad allocation (e.g. Öztürk et al., 2013, 2014; Chatterjee et al., 2016), utility

theory (Abe, 2012) and general economics models (Michaelides, 2006).

With square pieces a proportional allocation may not exist, so we have to set-

tle for partial-proportionality. Other goals that justify partial-proportionality are

speed of computation (Edmonds and Pruhs, 2006a; Edmonds et al., 2008), im-

proving the social welfare (Zivan, 2011; Arzi, 2012) and guaranteeing a minimum-

length constraint of a 1-dimensional piece (Caragiannis et al., 2011).

3.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal defini-

tions).

• C is the cake to be divided. In this chapter it will usually be a polygon or a

polygonal domain in the Euclidean plane R2.

• S is the family of pieces that are considered usable. An S-piece is an element

of S. In this chapter it will usually be the family of squares or fat rectangles.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece

Xi.

• For each agent i ∈ {1, . . . , n}, VS
i (Xi) is agent i’s utility of the piece Xi. It is

the value-measure of the most valuable S-piece contained in Xi.

The fairness of an allocation is determined by the agents’ normalized values. Val-

ues can be normalized in two ways:

• either divide them by the absolute cake value for the agent and get Vi(Xi)/Vi(C),

• or divide them by the relative cake utility for the agent and get Vi(Xi)/VS
i (C).

7We are thankful to Steven Landsburg, Michael Greinecker, Kenny LJ, Alecos Papadopoulos, B
Kay and Martin van der Linden for contributing these references in economics.stackexchange.com
website (http://economics.stackexchange.com/q/6254/385).
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Throughout the chapter absolute normalization is used, except in Subsection 3.5.6

where relative normalization is used.

An allocation is called proportional if the normalized value of every agent is

at least 1/n. Example 3.1.1 shows that a proportional allocation is not always

attainable (whether absolute or relative normalization is used). Hence, we define:

Definition 3.2.1. (Absolute proportionality) For a cake C, a family of usable pieces

S and an integer n ≥ 1:

(a) The proportionality level of C, S and n, marked Prop(C, S, n), is the largest

fraction r ∈ [0, 1] such that, for every n value measures (Vi, ..., Vn), there exists an

S-allocation (X1, ..., Xn) for which ∀i : Vi(Xi)/Vi(C) ≥ r.8

(b) The same-value proportionality level of C, S and n, marked PropSame(C, S, n),

is the largest fraction r ∈ [0, 1] such that, for every single value measure V, there

exists an S-allocation (X1, ..., Xn) for which ∀i : V(Xi)/V(C) ≥ r.

The analogous definition for relative proportionality is given in Subsection

3.5.6.

Obviously, for every C, S and n: Prop(C, S, n) ≤ PropSame(C, S, n) ≤ 1/n.

Applying this notation, classic cake-cutting results (e.g. Steinhaus, 1948) im-

ply that for every cake C

Prop(C, All, n) = PropSame(C, All, n) = 1/n

where ”All” is the collection of all pieces. That is: when there are no geometric

constraints on the pieces, for every cake C and every combination of n continuous

value measures there is a division in which each agent receives a utility of 1/n,

which is the best that can be guaranteed. One-dimensional procedures with con-

tiguous pieces (e.g. Even and Paz, 1984) prove that Prop(Interval, intervals, n) =

1/n and when translated to two dimensions they yield:

Prop(Rectangle, rectangles, n) = PropSame(Rectangle, Rectangles, n) = 1/n

8Shortly: Prop(C, S, n) = infV supX mini Vi(Xi)/Vi(C), where the infimum is on all combina-
tions of n value measures (V1, ..., Vn), the supremum is on all S-allocations (X1, ..., Xn) and the
minimum is on all agents i ∈ {1, ..., n}.
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However, these procedures do not consider constraints that are two-dimensional

in nature, such as squareness. Such two-dimensional constraints are the focus of

the present chapter.

Our challenge in the rest of this chapter will be to establish bounds on Prop(C, S, n)

and PropSame(C, S, n) for various cake shapes C and piece families S. Two types

of bounds are provided:

• Impossibility results (upper bounds), of the form Prop(C, S, n) ≤ f (n) where

f (n) ∈ [0, 1], are proved by showing a set of n value measures on C, such

that in any S-allocation, the value of one or more agents is at most f (n). Such

bounds are established in Section 3.3.

• Positive results (lower bounds), of the form Prop(C, S, n) ≥ g(n) where

g(n) ∈ [0, 1], are proved by describing a division procedure which finds,

for every set of n value measures on C, an S-allocation in which the value of

every agent is at least g(n). Such bounds are established in Sections 3.4-3.5.

3.3 Impossibility Results

Our impossibility results are based on the following scenario.

• The cake C is a desert with only k water-pools; the set of pools is denoted

Pk.

• Each pool in Pk is a square with side-length ε > 0 containing 1 unit of water.

• There are n agents with the same value measure: the value of a piece equals

the total amount of water in the piece. So the value of each pool in Pk is 1

and the total cake value is k.

• We say that a piece Xi is supported by Pk if Xi contains strictly more than 1

unit of water from Pk. This implies that Xi touches at least two pools of Pk.

• We say that Pk supports m squares if there exists a collection of m pairwise-

disjoint squares each of which contains strictly more than one unit of water

from Pk.
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a. Prop(C,Squares,2) ≤ 1/3

x

b. Prop(C,Squares,3) ≤ 1/5

Figure 3.3: Impossibility results in a quarter-plane cake.

a. Prop(C,Squares,2) ≤ 1/4

x

b. Prop(C,Squares,3) ≤ 1/6

Figure 3.4: Impossibility results in a square cake.

The latter definition implies the following lemma:

Lemma 3.3.1. A collection of k pools supports at most k− 1 squares.

Proof. Let Pk be a collection of k pools and suppose that it supports m squares.

This means that there exists a collection of m pairwise-disjoint squares, each of

which contains more than one unit of water from Pk. So the union of these squares

contains strictly more than m units of water from Pk. Since each pool in Pk con-

tains exactly one unit of water, necessarily k ≥ m + 1 so m ≤ k− 1.

In each impossibility result, we present a set Pk and prove that it supports at

most n − 1 squares. This implies that, in every allocation of n pairwise-disjoint

squares, at least one agent receives a piece not supported by Pk — a piece with at

most 1 unit of water. The value of this agent is at most a fraction 1/k of the total

cake value. This implies that PropSame(C, Squares, n) ≤ 1/k, which implies that

Prop(C, Squares, n) ≤ 1/k.

3.3.1 Impossibility results for two, three and four walls

We start with impossibility results for two agents.

Claim 3.3.1.

PropSame(Quarter plane, Squares, 2) ≤ 1/3
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Proof. Let P3 be the set of 3 pools shown in Figure 3.3/a, where the bottom-left

corners of the pools are in (0, 0), (10, 0), (0, 10). Every square in C touching two

pools of P3 must contain e.g. the point (6, 6) in its interior (marked by x in the

figure). Hence, every two squares touching two pools of P3 must overlap. Hence,

P3 supports at most one square. Hence, in any allocation of squares to two agents,

at least one square touches at most one pool of P3; the agent receiving such a

square has at most 1/3 of the total value.

Claim 3.3.2.

PropSame(Square, Squares, 2) ≤ 1/4

Proof. Analogous to the previous claim, based on the set P4 shown in Figure

3.4/a.

To extend these results to n > 2 agents, we construct new sets of pools by

shrinking existing sets into pools of other sets.

As an example, consider P3 from the proof of Claim 3.3.1. Suppose the entire

plane is shrunk (deflated) towards the origin. If the deflation factor is sufficiently

large, all three pools of the shrunk P3 are contained in [0, ε] × [0, ε], which is a

pool of the original P3. The cake itself (the quarter-plane) is not changed by the

deflation. By adding the other two pools of P3, namely (10, 0) and (0, 10), we get

a larger pool set, P5, which is depicted in Figure 3.3/b. We already know that the

shrunk P3 supports at most one square. The additional two pools support at most

one additional square, since there is at most one square touching two new pools

or a new pool and a shrunk pool. Hence, P5 supports at most two squares. This

proves that PropSame(Quarter plane, Squares, 3) ≤ 1/5. The following claim

generalizes this construction.

Claim 3.3.3. For every n ≥ 1:

PropSame(Quarter plane, Squares, n) ≤ 1
2n− 1

Proof. 9It is sufficient to prove that for every n there is an arrangement of 2n− 1

9We are grateful to Boris Bukh for the idea underlying this proof.
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pools in C that supports at most n− 1 squares. The proof is by induction on n.

The base case n = 1 is trivial (and the case n = 2 is Claim 3.3.1). For n > 2,

assume there is an arrangement of 2(n− 1)− 1 pools that supports at most n− 2

squares. Deflate the entire arrangement towards the origin until it is contained in

[0, ε]× [0, ε], where ε > 0 is a sufficiently small constant.

Add two new pools with side-length ε cornered at (10, 0) and (0, 10). We now

have an arrangement of 2n − 1 pools. Every square touching a new pool and

another pool (either new or old), must contain e.g. the point (6, 6) in its interior,

so every two such squares must overlap. Hence, the additional pools support

at most one additional square. All in all, the new arrangement of 2n − 1 pools

supports at most (n− 2) + 1 = n− 1 squares.

The upper bound for two walls is also trivially true when the cake is a square

with three walls, since adding walls cannot increase the proportionality:

PropSame(Square with 3 walls, Squares, n) ≤ 1
2n− 1

The bound also holds for a square with 4 walls, but in this case a slightly tighter

bound is true:

Claim 3.3.4. For every n ≥ 2,

PropSame(Square with 4 walls, Squares, n) ≤ 1
2n

Proof. W.l.o.g. assume C is the square [0, 10 + ε]× [0, 10 + ε]. Create the arrange-

ment of 2(n− 1)− 1 pools from the induction step of Claim 3.3.3. Deflate it into

to [0, ε]× [0, ε]. The shrunk collection supports at most n− 2 squares. Add three

new pools with side-length ε cornered at (10, 0), (0, 10) and (10, 10), as in Figure

3.4/b. Every square in C touching a new pool and another pool must contain

(5, 5) in its interior. Hence, the three additional pools allow us to support at most

one additional square. All in all, the new arrangement of 2n pools supports at

most n− 1 squares.
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a. Prop(C, Squares, 3) ≤ 1/4

x-x

b. Prop(C, Squares, 5) ≤ 1/7

Figure 3.5: Impossibility result for 3 agents on a half-plane. See Claims 3.3.5-3.3.6.

3.3.2 Impossibility results for one wall

Claim 3.3.5.

PropSame(Hal f plane, Squares, n = 3) ≤ 1/4

Proof. Let P4 be the set of 4 pools shown in Figure 3.5/a. Assume the side-length

of each pool is ε ≤ 0.01 and that their bottom-left corner is in (−5, 0), (0, 0),

(0, 10), (5, 0). We prove that P4 supports at most 2 squares. Examine the squares

in C that touch two pools of P4:

• Every square touching (5, 0) and another pool must contain the point x

(4, 4.5) in its interior.

• Every square touching (−5, 0) and another pool must contain the point -x

(−4, 4.5).

• Every square touching (0, 0) and another pool must touch either x or -x or

both.

Hence, in every set of three squares, each of which touches two pools of P4, at

least two squares must overlap. Hence, P4 supports at most two squares. Hence,

in any allocation to three agents, at least one of them receives at most 1/4 of the

total value.
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Claim 3.3.6. For every n ≥ 2:

PropSame(Hal f plane, Squares, n) ≤ 1
(3/2)n− 1

Proof. The proof is analogous to that of Claim 3.3.3. With each induction step,

the current arrangement of pools is shrunk towards the central pool at the origin,

three new pools are added, but only two new squares are supported. Hence the

coefficient of n is 3/2. The −1 ensures that the right-hand side is a correct upper

bound for every n ≥ 2.

Figure 3.5/b shows the set of 7 pools for the case n = 5.

3.3.3 Impossibility results for zero walls

Finding an impossibility result for an unbounded cake is a challenging task. The

main difficulty is that, when there are no walls, any arrangement of pools can be

rotated arbitrarily, as will be explained shortly.

We begin with impossibility results for the restricted case in which the squares

must be parallel to a specific coordinate system. Such a restriction may be mean-

ingful, for example, in the installation of solar power-plants or the building of

houses with electric solar panels, where the positioning relative to the sun is im-

portant.

Claim 3.3.7. Given a fixed coordinate system in the plane:

PropSame(Plane, Axes Parallel Squares, n = 5) ≤ 1/6

Proof. Let P6 be the set of 6 pools: A(0,2.5), B(-3,0), C(-1,0), C’(1,0), B’(3,0), A’(0,-

2.5). We prove that P6 supports at most 4 axes-parallel squares. First, consider the

squares that touch two pools of P6:
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(a) P6 Pools:

B C C’ B’

A

A’

(b) Potential squares:

B C C’ B’

A

A’

We can ignore squares that contain other squares or that contain pools in their

interior, since such squares can be shrunk without interfering with other squares.

Hence, any set of supported squares must contain a subset of the following:

• At most two disjoint ”top squares” (squares touching pool A) and two dis-

joint ”bottom squares” (touching pool A’). Each such square has a side-

length of 2.5.

• At most one ”left square” (touching pools B and C), one ”right square”

(touching pools B’ and C’) and one ”central square” (touching C and C’).

Each such square has a side-length of 2 and can be located anywhere be-

tween y = −2 and y = 2. 10

We prove that at most four of these squares can be supported simultaneously.

There are two cases:

Case #1: there are no bottom squares. The pool A’ is not used, so only 5

pools are used. By Lemma 3.3.1, these pools can support at most 4 squares. The
10While there can two disjoint squares touching pools B+C, Lemma 3.3.1 implies that the pools

B+C can support at most one square. The same is true for the pools B’+C’ and C+C’.
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situation is similar if there are no top squares, since in this case the pool A is not

used.

Case #2: there is at least one bottom square (e.g, a square supported by A’ and

C’) and at least one top square (e.g, supported by A and C). These two squares

leave no room for a central square. Hence, there is room for at most two addi-

tional squares: one above the x axis (e.g, supported by A and C’, or C’ and B’),

and one below the x axis (e.g, supported by A’ and C, or C and B).

In all cases, P6 supports at most 4 axes-parallel squares.

Claim 3.3.8. Given a fixed coordinate system in the plane, for every k ≥ 0:

PropSame(Plane, Axes Parallel Squares, n = 5 + 9k) ≤ 1/(6 + 10k)

Proof. We prove that for every k ≥ 0, there exists an arrangement of 6+ 10k pools

that supports at most 4 + 9k axes-parallel squares. The proof is by induction on

k. The base k = 0 is proved by P6 from Claim 3.3.7. Assume that there exists

an arrangement P6+10(k−1) which supports at most 9 + 4k squares. Construct a

new arrangement P6+10k in the following way. Take P6, replace the pool A a with

shrunk copy of P6 and the pool A’ with a shrunk copy of P6+10(k−1). The following

illustration shows P16, the arrangement for k = 1 (the shrunk copies are enlarged

for the sake of clarity):

B C C’ B’

B C C’ B’

A

A’

B C C’ B’

A

A’

The number of pools in the new arrangement is 6 + 4 + 6 + 10(k− 1) = 6 + 10k.

We claim that it supports at most 4 + 9k squares:

• The shrunk copy of P6 supports at most 4 squares;

• The shrunk copy of P6+10(k−1) supports at most 4 + 9(k− 1) squares, by the

induction assumption;
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• The four pools B C C’ B’ in the large P6 support at most 3 large squares;

• If there is a top large square then there is at most one additional large square

above the x axis, and if there is a bottom large square then there is at most

one additional large square below the x axis.

All in all, at most 4+ 4+ 9(k− 1) squares are supported by the shrunk copies and

at most 3+2=5 additional large squares are supported by the outer arrangement,

so the total number of supported squares is at most 4 + 9k.

In general, every 10 additional pools support at most 9 additional squares.

Hence:

PropSame(Plane, Axes Parallel Squares, n) ≤ 1
(10/9)n− 1

≈ 9
10
· 1

n

This implies that any division procedure which works in a pre-specified coordi-

nate system cannot guarantee a proportional division of the plane with square

pieces.

In our next results, we relax the axes-parallel restriction and only require that

the squares be parallel to each other. While this is still not the most general set-

ting, it is natural e.g. in urban planning. Equivalently, we still require that the

squares be parallel to the axes, but allow the arrangement of pools to rotate.

Note that the proof of Claim 3.3.7 (Case 2) relies on the fact that any pair of a

top-square and a bottom-square leaves no room for a central square. This follows

from the facts that A and A’ lie horizontally between C and C’, and the horizontal

distance between C and C’ is larger than the vertical distance between B and B’.

These facts are still true if the entire arrangement is rotated by at most 18◦ to

either direction:11

11The calculation was done using Geogebra (Hohenwarter, 2002; Hohenwarter et al., 2013). The
worksheet is available here: https://tube.geogebra.org/m/zzNY3ag4
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(a) P6 rotated 18◦:

B

C

C’

B’

A

A’

(b) Potential squares:

B

C

C’

B’

A

A’

For every angle θ, define ParallelSquares[θ] as the family of squares rotated at

exactly θ degrees (counter-clockwise) relative to the axes. Then, the proofs of

Claim 3.3.7 and 3.3.8 and the above explanation imply:

Claim 3.3.9. For every θ ∈ [−18◦,+18◦] and every k ≥ 0:

PropSame(Plane, ParallelSquares[θ], n = 5 + 9k) ≤ 1/(6 + 10k)

The arrangement P6+10k ”covers” a range of rotation-angles of size 36◦. By

using three copies of P6+10k rotated in different angles, we can cover the entire

range of relevant rotation angles. We use this idea to prove an impossibility result

for rotated parallel squares.
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Claim 3.3.10. For every k ≥ 0:

PropSame(Plane, ParallelSquares, n = 18 + 29k) ≤ 1/(18 + 30k)

Proof. Construct an arrangement P18+30k from three copies of P6+10k:

• A leftmost copy — rotated by −27◦ and translated by (−300, 0);

• A central copy — not rotated;

• A rightmost copy — rotated by +27◦ and translated by (+300, 0).

The following illustration shows P18 (the construction for k = 0) with the three

copies enlarged for the sake of clarity:

B

C

C’

B’

A

A’

B C C’ B’

A

A’

B

C

C’

B’

A

A’

We claim that if P18+30k is rotated by any angle θ ∈ [−45◦, 45◦], then the ro-

tated arrangement supports at most 18 + 29k axes-parallel squares. Consider

three cases:

(a) P18+30k is rotated by θ ∈ [−45◦,−9◦]. Then, the rightmost copy is P6+10k

rotated by θ + 27◦ ∈ [−18◦, 18◦], so it supports at most 4 + 9k squares.

(b) P18+30k is rotated by θ ∈ [−18◦,+18◦]. Then the central copy supports at

most 4 + 9k squares.

(c) P18+30k is rotated by θ ∈ [+9◦,+45◦]. Then the leftmost copy is P6+10k

rotated by θ − 27◦ ∈ [−18◦, 18◦], so it supports at most 4 + 9k squares.

In all cases, one of the copies supports at most 4 + 9k squares. Each of the

other two copies has 6+ 10k pools, so by Lemma 3.3.1 it supports at most 5+ 10k

squares. Additionally, between the three copies there can be at most four (huge)

pairwise-disjoint squares: two above and two below the x axis. All in all, the

number of supported squares is at most (4 + 9k) + (5 + 10k) + (5 + 10k) + 4 =

18 + 29k.
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Therefore, for any angle θ ∈ [−45◦, 45◦], if the family S of usable pieces is the

family of squares rotated by θ, then P18+30k supports at most 18 + 29k S-pieces.

But, any square is identical to a square rotated by θ ∈ [−45◦, 45◦]. Therefore, the

existence of P18+30k proves the claim.

In Claim 3.3.10, for every 30 new pools, at most 29 new squares can be sup-

ported. Therefore,

Claim 3.3.11. For every n ≥ 1:

PropSame(Plane, Parallel Squares, n) ≤ 1
(30/29)n− 1

≈ 29
30
· 1

n

3.3.4 Impossibility results with fat rectangles

Our impossibility results so far have assumed that S is the family of squares. One

could think that allowing fat rectangles, instead of just squares, can overcome

these impossibility results. But this is not necessarily true. Claim 3.3.1 holds as-is

for R-fat rectangles:

Claim 3.3.12. For every finite R ≥ 1:

PropSame(Quarter plane, R f at rectangles, 2) ≤ 1/3

Proof. Let P3 be the arrangement of 3 pools from the proof of Claim 3.3.1:

x

x

x

The side-length of each pool is ε > 0. Every R-fat rectangle touching the two

bottom pools must have a height of at least (10− 2ε)/R and thus, when ε is suffi-

ciently small, it must contain the point (5/R, 5/R) and the point (10− 10/R, 5/R).

Every R-fat rectangle touching the two left pools must contain the point (5/R, 5/R)

and the point (5/R, 10− 10/R). Every R-fat rectangle touching the top-left and

the bottom-right pools must contain (10 − 10/R, 5/R) and (5/R, 10 − 10/R).
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Hence, in every allocation of disjoint R-fat rectangles, at most one rectangle touches

two or more pools.

Claim 3.3.3 is based on Claim 3.3.1, so it holds as-is for R-fat rectangles. The

same is true for the 3-walls result. The 1-wall claims 3.3.5 and 3.3.6 can be gener-

alized in a similar way:

We omit the details. We obtain:

Claim 3.3.13. For every R ≥ 1:

PropSame(Square with 1 wall, R f at rectangles, n) ≤ 1
(3/2)n− 1

PropSame(Square with 2 walls, R f at rectangles, n) ≤ 1
2n− 1

PropSame(Square with 3 walls, R f at rectangles, n) ≤ 1
2n− 1

Claims 3.3.2 and 3.3.4 hold whenever R < 2, since in this case, every R-fat rect-

angle touching one of the corner-pools must contain the central point of the cake

in its interior, as shown below:

x x

This gives:

Claim 3.3.14. For every R such that 1 ≤ R < 2:

PropSame(Square with 4 walls, R f at rectangles, n) ≤ 1
2n

When R ≥ 2, the following slightly weaker result follows immediately from

Claim 3.3.13 (since adding walls cannot increase the proportionality):
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Claim 3.3.15. For every R ≥ 2: 12

PropSame(Square with 4 walls, R f at rectangles, n) ≤ 1
2n− 1

The impossibility results for an unbounded plane are different for R-fat rect-

angles. Consider first Claim 3.3.7, which assumes that the pieces must be axes-

parallel. When the pieces have to be squares, the set P6 supports at most 2 pieces

above the x axis and 2 pieces below the x axis. But when the pieces may be R-fat

rectangles and R ≥ 2.5, it is possible to support 3 pieces above or below the x

axis, e.g:

B C C’ B’

A

A’

The impossibility result can be maintained by locating the pool A at (2.5R, 0)

instead of (2.5, 0), and the pool A′ at (−2.5R, 0) instead of (−2.5, 0):

B C C’ B’

A

A’

So Claim 3.3.7, and hence Claim 3.3.8, are valid for R-fat rectangles, and we ob-

tain:

Claim 3.3.16. Given a fixed coordinate system in the plane, for every R ≥ 1:

PropSame(Plane, Axes Parallel R f at rectangles, n) ≤ 1
(10/9)n− 1

12By classic cake-cutting protocols, PropSame(Square, ∞ f at rectangles, n) = 1/n (an ∞-fat
rectangle is just an arbitrary rectangle). The PropSame function is thus discontinuous at R = ∞.
If the agents agree to use any rectangular piece, they can receive their proportional share of 1/n,
but if they insist on using R-fat rectangles, even when R is very large, they might have to settle
for about half of this share.
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However, the angle-range in which Claim 3.3.16 holds is no longer [−18◦, 18◦]

— the range becomes smaller as a (complicated) function of R. This means that

more copies may be needed to ”cover” the entire range of [−45◦, 45◦]. Therefore,

the upper bound for parallel squares will probably be a complicated function of

R. We leave this issue for future work.

3.4 Auctions and Covers

Our cake-cutting procedures are composed of two types of auctions. In a mark

auction, each agent bids by marking a piece of the cake; the winner is the agent

marking the smallest piece. In an eval auction, each agent bids by declaring a value

for a pre-specified piece of cake; the winners are the agents declaring the highest

value. As usual in the cake-cutting literature, no monetary transfers are involved;

the agents effectively ’pay’ with their entitlements for a share of the cake. Below

we explain each auction type in detail.

3.4.1 Mark auction

In a mark auction, the divider specifies a geometric constraint and a value v. Each

agent has to mark a piece of the cake which satisfies the geometric constraint and

is worth for him exactly v. The geometric constraint guarantees that the marked

pieces are totally ordered by containment (i.e. for every two agents i, j, the bid

of i either contains or is contained in the bid of j). Hence, there is a smallest bid

— a bid contained in all other bids. There can be more than one smallest bid; in

this case, one smallest bid is selected arbitrarily. The agent making the selected

smallest bid is the winner; he is allocated his bid and goes home. The remaining

cake is divided among the remaining n− 1 agents.

Example 3.4.1. Dividing a rectangle to rectangles. The cake C is a rectangle and

S is the family of rectangles. We normalize the valuations of all agents such that

the value of the entire cake is n. We show how a sequence of mark auctions can

be used to give each agent a rectangle with a value of at least 1.

The proof is by induction on the number of agents n. When n = 1, C can just

be given to the single agent. Suppose we already know how to divide a rectangle
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to n− 1 agents who value it as n− 1. Now we are given n agents who value the

cake as n. We do a mark auction with the following geometric constraint: mark

a rectangle whose rightmost edge coincides with the rightmost edge of C. The auction

value is v = 1. The continuity of the valuations guarantees that all agents can

indeed bid as required, and the geometric constraint guarantees that the bids are

totally ordered by containment. An example is illustrated below, where there are

four bids marked by dotted lines:

the winning bid — the smallest rectangle — is marked by a thick dotted line. The

winner is given his bid, so he now has a rectangle with a value of exactly 1, as

required (recall that our guarantees are valid for every agent bidding truthfully,

regardless of what the other agents do). Since the n − 1 losing bids contain the

winning bid, the n− 1 losers value the winning bid as at most 1. By additivity,

they value the remaining cake as at least n− 1. Hence, by the induction assump-

tion we can divide the remaining cake among them in a similar way, finally giving

each agent a rectangle with a value of at least 1.13

A mark auction has the following interpretation. Initially, each agent holds

an entitlement for a piece of cake. An agent bidding a piece Xi is interpreted as

saying ”I am willing to give my entitlement in exchange for piece Xi”. The agent

marking the smallest piece is effectively offering the highest ”price” per unit area;

hence this agent is the winner. He pays for the win by giving up his entitlement

and leaving the remaining cake to the remaining agents.

3.4.2 Eval auction

In an eval auction, the divider specifies a piece of cake C′ ⊂ C. Each agent i has

to declare the value Vi(C′). The agents are ordered in a descending order of their

bids, such that V1(C′) ≥ V2(C′) ≥ · · · ≥ Vn(C′). The procedure calculates the

13Example 3.4.1 shows that Prop(Rectangle, Rectangles, n) = 1/n. This result is not new since
it follows immediately from known results on 1-dimensional cake-cutting. It is presented here to
show that it fits well into the auction framework.
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number of winners n′ (we explain shortly how this number is calculated). The n′

highest bidders, 1, . . . , n′, are the winners. The remaining n − n′ agents are the

losers. The procedure then divides C′ among the winners and C \ C′ among the

losers.

To calculate the number of winners n′, we should already have a plan for

dividing C′ among each possible number of winners n′ ≤ n. Specifically, we

should have a procedure for dividing C′ among n′ agents, each of whom values

C′ as at least F(n′) (where F is some increasing function), such that each agent

is guaranteed a piece with a value of at least 1. Assuming that we have such a

procedure, the number of winners is defined as the largest integer n′ such that:

Vn′(C′) ≥ F(n′)

or 0 if already V1(C′) < F(1). Since Vn′(C′) is a decreasing sequence, the defini-

tion implies that:

• For every winner i ∈ {1, . . . , n′}: Vi(C′) ≥ F(n′)

• For every loser i ∈ {n′ + 1, . . . , n}: Vi(C′) < F(n′ + 1)

(this is true even when n′ = 0). Hence, the set of winners is a largest set of agents

for whom we can divide C′ in a way which guarantees each of them a value of at

least 1.

Example 3.4.2. Dividing an archipelago to rectangles. The cake C is an ”archipelago”

— a union of m disjoint rectangular ”islands”. S is the family of rectangles. We

normalize the valuations of all agents such that the value of the entire archipelago

is n + m− 1. We show how a sequence of eval auctions can be used to give each

agent a rectangle, contained in one of the islands, with a value of at least 1.

The proof is by induction on the number of islands m. When m = 1, C is a

single rectangle and all agents value it as at least n, so the procedure of Example

3.4.1 can be used to give each agent a rectangle with a value of at least 1. Sup-

pose we already know how to divide an archipelago of m− 1 islands. Given an

archipelago of m islands, pick one island arbitrarily and call it C′. Do an eval

auction on C′. Order the bids in descending order, and let n′ be the largest index
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such that:

Vn′(C′) ≥ n′

or 0 if already V1(C′) < 1. If n′ = 0 then just discard C′; otherwise use the

procedure of Example 3.4.1 to divide C′ among the n′ winners. By definition,

each winner values C′ as at least n′ so he is guaranteed a rectangular piece of C′

with a value of at least 1.

All n − n′ losers value C′ as less than n′ + 1, so they value the remaining

archipelago C \ C′ as more than (n + m− 1)− (n′ + 1) = (n− n′) + (m− 1)− 1.

This is an archipelago of m − 1 islands, so by the induction assumption we can

divide it among the remaining n− n′ agents giving each agent a rectangle with a

value of at least 1. Note that this is true even when n′ = 0.14

An eval auction has the following interpretation. Initially, each agent has an

entitlement to share the entire cake C with n agents (including the agent himself).

An agent bidding a value V is interpreted as saying ”I am willing to give my

entitlement in exchange for an entitlement to share C′ with at most n′ agents,

where n’ is the largest integer such that V ≥ F(n′).” The agents with the highest

bids are actually offering a higher ”price” for C′, since they are willing to share C′

with a larger number of other agents. Hence, the highest bidders are the winners.

They pay for their win by giving up their entitlement to C \ C′ and leaving it to

the remaining agents.

3.4.3 Cover numbers

The last ingredient we need for our division procedures, in addition to the two

auction types, is the cover number. It is a well-known concept in computational

geometry (see Keil (2000) for a survey).

Definition 3.4.3. Let C be a cake and S a family of pieces.

(a) An S-cover of C is a set of S-pieces, possibly overlapping, whose union equals

14Example 3.4.2 shows that Prop(m disjoint rectangles, Rectangles, n) ≥ 1/(n + m − 1). It is
easy to construct an arrangement of pools, analogous to the ones in Section 3.3, proving that this
is the best proportionality that can be guaranteed.

47



3.1× 1 rectangle:
CoverNum(C,squares)=4

L-shape:
CoverNum(C,squares)=3

L-shape:
CoverNum(C,rectangles)=2

T-shape:
CoverNum(C,squares)=3

Figure 3.6: Cover numbers of various polygons.

C.

(b) The S-cover number of C, CoverNum(C, S), is the minimum cardinality of an

S-cover of C.

Some examples are depicted in Figure 3.6.

The cover number is related to the utility that a single agent can derive from

a given cake:

Lemma 3.4.4. (Covering Lemma) For every cake C and family S:

Prop(C, S, n = 1) ≥ 1
CoverNum(C, S)

Proof. Let k = CoverNum(C, S) and let {C1, ..., Ck} be an S-cover of C. By defini-

tion ∪k
j=1Cj = C. By additivity, if an agent’s valuation function is V, then:

k

∑
j=1

V(Cj) ≥ V(C)

so the average value of the left-hand side is at least V(C)/k. By the properties of

the average, at least one summand must be weakly larger than the average value,

i.e, there exists j for which V(Cj) ≥ V(C)/k. This Cj, which is an S-piece, gives

the single agent a utility of at least 1/k of the total cake value.

The next example combines an eval auction, a mark auction and the Covering

Lemma.

Example 3.4.5. Dividing a square between two agents who want square pieces.

The cake C is a square, S is the family of squares and there are n = 2 agents.

Example 3.1.1 shows that the maximum utility that can be guaranteed to both
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agents is 1/4 of the total value. We now present a division procedure that guar-

antees this utility. We normalize the valuations of both agents such that their

value of C is 4 and give each agent a square with a value of at least 1.

Partition the cake to a 2× 2 grid. Denote one of the four quarters as C′, e.g.:

C′

Do an eval auction on C′. Let n′ be the number of agents whose bid is at least 1.

Case #1: n′ = 0 (both agents value C′ as less than 1). Denote another quarter as

C′ and do an eval auction again. Because the total cake value is 4, this can happen

at most three times; eventually one of the other cases must happen.

Case #2: n′ = 1. The single agent who values C′ as at least 1 wins C′ and goes

home. The losing agent values C′ as less then 1 so he values C \ C′ as more than

3. C \ C′ is a union of 3 squares, so by the Covering Lemma the losing agent can

get from it a square with a value of at least 1.

Case #3: n′ = 2. Do a mark auction with the following constraint: mark a square

with a value of 1 contained in C′ and adjacent to a corner of C. Both agents can bid

as required, since they value C′ as at least 1 so they have a square with a value

of exactly 1 inside C′. An example is illustrated below, where the two bids are

marked by dotted lines:

The winning bid (the smallest square) is marked with thicker dots. It is given to

the winner, who walks home with a square worth 1. The remaining cake is an

L-shape similar to the one in Figure 3.6. Its cover number is 3 and its value for

the loser is at least 3. By the Covering Lemma, it contains a square whose value

to the loser is at least 1.15 The final allocation may look like:

15Combining the lower bound proved by Example 3.4.5 with the upper bound proved by Claim
3.3.2 gives a tight result for two agents: Prop(Square, Squares, n = 2) = 1/4.
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The fairness of this allocation is evident: both agents agree that the south-west is

the most valuable district, so the agent who has to go to a less valuable district is

compensated by a larger plot.

Note that some land remains unallocated. This is unavoidable if the pieces

have to be square. Moreover, in realistic land-division scenarios it is common to

leave some land unallocated and available for public use.

3.5 Division procedures

In this section we use the building-blocks developed in Section 3.4 to create vari-

ous division procedures.

3.5.1 Four and three walls, guillotine cuts

We develop simultaneously a pair of division procedures. Both procedures accept

a cake C which is assumed to be the rectangle [0, L]× [0, 1], and return n disjoint

square pieces {Xi}n
i=1 such that for every agent i: Vi(Xi) ≥ 1.

The two procedures differ in their requirement on L (the length/width ratio

of the cake) and in the number of “walls” (bounded sides) they assume on the

cake:

• The 3-walls procedure requires that L ∈ [0, 1] and it guarantees that the allo-

cated squares are contained in [0, ∞]× [0, 1] (in other words, there is no wall

in the rightmost edge of the cake).

• The 4-walls procedure requires that L ∈ [1, 2] (i.e, the cake is a 2-fat rectangle)

and it guarantees that all allocated squares are contained in C.

Additionally, the two procedures differ in their requirement on the total cake

value:
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• The 3-walls procedure requires that for every agent i: Vi(C) ≥ max(1, 4n−
5).

• The 4-walls procedure requires that for every agent i: Vi(C) ≥ max(2, 4n−
4).

The procedures are developed by induction on the number of agents. We first

consider the base case in which there is a single agent (n = 1).

In the 3-walls procedure, the single agent values C as at least 1. The square

[0, 1]× [0, 1] contains all the value of C and it is contained within its three walls,

so it can be given to the single agent:

0 L

In the 4-walls procedure, the single agent values C as at least 2. The require-

ment on L guarantees that the cake can be covered by at most 2 squares:

0 L

Hence, by the Covering Lemma, the single agent can be given a square with a

value of at least 1.

We now assume that we can handle any number of agents less than n. Given

n agents (n ≥ 2), we proceed as follows.

3 Walls procedure

At this point, there are n ≥ 2 agents who value the cake as at least 4n− 5.

(1) Mark auction. Ask each agent to mark a rectangle with a value of exactly

1 adjacent to the rightmost edge of the cake (the edge without the wall):

51



x∗0 L

The winning bid (marked by thicker dots above) is a rectangle [x∗, L] × [0, 1].

There are two cases:

• Easy case: x∗ ≥ 1/2. Make a vertical guillotine cut at x∗. Give to the winner

the square [x∗, x∗ + 1]× [0, 1]. This square contains the winning bid, so its

value for the winner is at least 1. The remaining cake is a 2-fat rectangle

and its value for the remaining n − 1 agents is at least V(C) − 1 ≥ 4n −
6 ≥ max(2, 4(n− 1)− 4). Use the 4 walls procedure to divide the remainder

among the losers.

• Hard case: x∗ < 1/2. Now we cannot let the winner have the winning bid,

since the remainder will be too thin for the remaining agents. Our solution

relies on the following observation: the fact that x∗ < 1/2 means that all

agents value the rectangle [1/2, L] × [0, 1] as less than 1. Therefore, they

value the rectangle [0, 1/2]× [0, 1] as at least 4n− 6. Since all agents believe

that this ”far left” rectangle is so valuable, we are going to do an eval auction

inside it.

(2) Eval auction. Let C′ = [0, 1/2]× [1/2, 1] and C′′ = [0, 1/2]× [0, 1/2]:

0 L1/2

C′

C′′

Do an eval auction on C′. Order the agents in a descending order of their bid,

V1(C′) ≥ · · · ≥ Vn(C′), and let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 5, 1)
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If n′ = n then all agents value C′ as the entire cake, so the other parts of the cake

can be discarded and the division procedure can start again with C′ as the cake.

Hence, we assume that n′ < n. There are two main cases to consider:

• Easy case: 1 ≤ n′ ≤ n− 2. Make a horizontal guillotine cut between C′ and

C′′. Use the 3-walls procedure to divide C′ among the n′ winners.

The losers value C′ as less than max(4(n′+ 1)− 5, 1) = 4n′− 1. At this point

all agents value the rectangle C′∪C′′ as at least 4n− 6; hence, all losers value

C′′ as at least (4n − 6)− (4n′ − 1) = 4(n − n′)− 5. Since n − n′ ≥ 2, this

value is also larger than 1, so we can use the 3-walls procedure to divide C′′

among the n− n′ losers.

Note that no square is allocated to the right of the line x = 1/2, so we can

assume that the rightmost border of both C′ and C′′ is open and use the

3-walls procedure to divide them.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1, so they

value C′′ as at least 4n − 7. Now we have a problem: we cannot give C′

even to a single agent since it is not sufficiently valuable, but we also cannot

divide C′′ among all n agents since it too is not sufficiently valuable.

Our solution is to shrink C′′ towards the corner, until one of the agents de-

cides that it is better to take a piece outside C′′ and leave C′′ to the remaining

n − 1 agents. This solution is implemented using a mark auction, which is

described in detail in step (3) below. But before proceeding there is one

more case that must be handled:

• Mixed case: n′ = n − 1. This is handled according to the bid of the single

losing agent (agent n): if Vn(C′) < 4n − 7, then the losing agent values

C′′ as at least 1, so we can proceed as in the Easy case (the winning agents

receive C′ and the losing agent receives C′′). Otherwise, Vn(C′) ≥ 4n− 7,

so all agents value C′ as at least 4n − 7 (because the agents are ordered

in descending order of their bid). Switch the roles of C′ and C′′ (e.g. by

reflecting the cake about the line y = 1/2), and proceed as in the hard case

to the next auction.
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(3) Mark auction. Ask each agent to mark an L-shape with a value of exactly

2, the complement of which is a square inside C′′ with a value of 4n− 7 cornered

at the corner of C, like this:

0 L

X

Let X be the winning bid. X can be covered by two overlapping pieces: a square

near the top-left corner of C (denoted by Y below) and a square overlapping the

right edge of C (denoted by Z below):

0 L

Y

Z

Y

C \ X

At least one of these squares must have a value of at least 1 to the winner. If Y has

value 1 then give Y to the winner and leave Z unallocated; otherwise, give Z to

the winner, leave Y unallocated and rotate C clockwise 90◦. In both cases, C \ X

can be separated from the piece given to the winner using a horizontal guillotine

cut. Moreover, in both cases the cake to the right of C \ X is unallocated. The

remaining n− 1 agents value C \ X as at least (4n− 5)− 2, which is more than

max(1, 4(n− 1)− 5). Use the 3 walls procedure to divide C \ X among them.

4 Walls procedure

At this point, there are n ≥ 2 agents who value the cake as at least 4n− 4.

The 4-walls procedure is similar to the 3-walls procedure except that it has

one additional eval auction at the beginning. If this auction succeeds, then it ef-

fectively cuts the cake to two halves each of which is a 2-fat rectangle, so each

half can be divided recursively using the 4-walls procedure. If this auction fails

(as will be explained below), then the situation is similar to the 3-walls procedure

and we can use a similar sequence of three auctions.

54



(0) Eval auction. Let C′ = [L/2, 1]× [0, 1] = the rightmost half of C. Note that

both C′ and its complement are 2-fat rectangles:

0 LL/2

C \ C′ C′

Do an eval auction on C′. Order the agents in a descending order of their bid,

V1(C′) ≥ · · · ≥ Vn(C′), and let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 4, 2)

If n′ = n then for all agents Vi(C′) = Vi(C), so C \ C′ can be ignored and the

procedure can be restarted with C′ as the entire cake. Hence, there are two non-

trivial cases to consider:

• Easy case: 1 ≤ n′ ≤ n − 2. Make a vertical guillotine cut between C′ and

C \ C′. Use the 4-walls procedure to divide C′ among the n′ winners. This

is possible since C′ is a 2-fat rectangle and all winners value it as at least

max(4n′ − 4, 2).

The losers value C′ as less than max(4(n′ + 1)− 4, 2) = 4n′, so they value

the remaining half C \C′ as more than (4n− 4)− 4n′ = 4(n− n′)− 4. Since

n − n′ ≥ 2, this value is also larger than 2. Use the 4-walls procedure to

divide C \ C′ among the n− n′ losers; this is possible since C \ C′ is a 2-fat

rectangle and all losers value it as at least max(4(n− n′)− 4, 2).

• Hard case: n′ = 0. This means that all agents value C′ as less than 2 so they

value the remainder C \C′ as at least 4n− 6. We are going to enlarge C′ left-

wards, until it becomes sufficiently valuable such that some agent is willing

to accept it. We implement this solution using a mark auction, described in

step (1) below. But beforehand, one more case must be handled:

• Mixed case: n′ = n − 1. This case is handled according to the bid of the

losing agent: if Vn(C′) < 4n − 6, then the losing agent values C \ C′ as at
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least 2, so we can proceed as in the Easy case (the winning agents receive

C′ and the losing agent receives C \ C′). Otherwise, Vn(C′) ≥ 4n− 6, so all

agents value C′ as at least 4n− 6. Switch the roles of C′ and C \ C′ (e.g. by

reflecting the cake C about the line x = L/2), and proceed as in the hard

case to the next auction.

(1) Mark auction. Ask each agent to mark a rectangle with a value of exactly

2 adjacent to the rightmost edge of C:

x∗0 L

The smallest rectangle wins. Let x∗ be the x coordinate of its leftmost edge, so the

winning bid is [x∗, L]× [0, 1]. Since all agents value C′ as less than 2, all bids must

contain C′, so x∗ ≤ L/2. There are two cases:

• Easy case: x∗ ≥ 1/2. Make a vertical guillotine cut at x∗. Both the winning

bid and its complement are 2-fat rectangles. By the Covering Lemma, the

winner can be allocated from its bid a square with a value of at least 1. The

n− 1 losers value the remaining cake, [0, x∗]× [0, 1], as at least 4n− 6, which

is at least max(2, 4(n− 1)− 4). Hence, the 4-walls procedure can be used to

divide the remainder among the losers.

• Hard case: x∗ < 1/2. Now we cannot let the winner have the winning bid,

since the remainder will be too thin for the remaining agents. But we know

that all agents value the rectangle [1/2, L]× [0, 1] as less than 2 so they value

the rectangle [0, 1/2]× [0, 1] as at least 4n− 6. Since all agents believe that

this rectangle is so valuable, we are going to do an eval auction inside it.

(2) Eval auction. Let C′ = [0, 1/2]× [1/2, 1] and C′′ = [0, 1/2]× [0, 1/2]:

0 L1/2

C′

C′′
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Do an eval auction on C′ and let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 5, 1)

As in step (0), the case n′ = n is trivial and can be ignored. There are two non-

trivial cases:

• Easy case: 1 ≤ n′ ≤ n− 2. Make a horizontal guillotine cut between C′ and

C′′. Use the 3-walls procedure to divide C′ among the n′ winners. The 3-walls

procedure might allocate pieces that flow over the right boundary of C′ (the

line x = 1/2). This does not cause any problem because the side-length

of these rectangles is at most 1/2, so they are still contained in the original

cake C.

The losers value C′ as less than max(4(n′+ 1)− 5, 1) = 4n′− 1. At this point

of the procedure, all agents value the rectangle C′ ∪ C′′ as at least 4n − 6;

hence, all losers value C′′ as at least (4n − 6)− (4n′ − 1) = 4(n − n′)− 5.

Since n− n′ ≥ 2, this value is also larger than 1, so we can use the 3-walls

procedure to divide C′′ among the n− n′ losers.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1 and value

C′′ as at least 4n− 7. We are going to ”shrink” C′′ using a mark-auction in

step (3). But beforehand we handle the remaining case:

• Mixed case: n′ = n− 1. Proceed according to the bid of the losing agent: if

Vn(C′) < 4n − 7, then the losing agent values C′′ as at least 1, so we can

proceed as in the Easy case (the winning agents receive C′ and the losing

agent receives C′′). Otherwise, Vn(C′) ≥ 4n− 7, so all agents value C′ as at

least 4n− 7. Switch the roles of C′ and C′′, and proceed as in the hard case

to the next auction.

(3) Mark auction. Ask each agent to mark an L-shape with a value of 3, whose

complement is a square inside C′′ cornered at the corner of C, like this:
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0 L

X

Since all agents value C′′ as at least 4n− 7 = (4n− 4)− 3 they can indeed bid as

required. Let X be the winning bid. X is an L-shape that can be covered by two

overlapping pieces: a square near the top-left corner of C (denoted by Y below)

and a rectangle near the right edge of C (denoted by Z below):

0 L

Y
Z

Y

C \ X

Since the winner values X as 3, at least one of the following must hold:

• The winner values Y as at least 1; if this is the case then the winner receives

Y, and Z remains unallocated.

• The winner values Z as at least 2; if this is the case then the winner selects

a square from Z with a value of at least 1 (this is possible by the Covering

Lemma since Z is a 2-fat rectangle), and Y remains unallocated. If this is the

case, then rotate C clockwise 90◦.

In both cases, C \ X can be separated from the piece given to the winner using

a horizontal guillotine cut. In both cases, the cake to the right of C \ X is un-

allocated. The n − 1 losers value X as at most 3 so they value C \ X as at least

(4n− 4)− 3, which is at least max(1, 4(n− 1)− 5). Therefore, the 3 walls proce-

dure can be used to divide C \ X among them.

The above pair of procedures prove the following pair of positive results ∀n ≥
2:

Prop(2 f at rectangle with all sides bounded, Squares, n) ≥ 1
4n− 4

Prop(Rectangle with a long side unbounded, Squares, n) ≥ 1
4n− 5
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Since a square is a 2-fat rectangle:

Prop(Square with 4 walls, Squares, n) ≥ 1
4n− 4

Prop(Square with 3 walls, Squares, n) ≥ 1
4n− 5

Fat rectangle pieces

When the pieces are allowed to be R-fat rectangles, the above lower bounds are of

course still true, since a square is an R-fat rectangle. But when R ≥ 2, the 4-walls

division procedure can give slightly stronger guarantees — the required value

is max(1, 4n − 5) instead of max(2, 4n − 4) (this is analogous to the fact that in

Subsection 3.3.4, when the pieces are allowed to be R-fat rectangles with R ≥ 2,

our upper bound for a cake with 4 walls is slightly weaker — the denominator is

2n− 1 instead of 2n). The required modifications are briefly explained below:

• In the base case (n = 1), since the cake is 2-fat, the single agent can have it

all, so it is sufficient that its value be 1.

• In step (0), after the Eval auction, n′ is the largest integer with Vn′(C′) ≥
max(4n′ − 5, 1). In the easy case, the n′ winners value their share C′ as at

least max(4n′ − 5, 1) and the n− n′ losers value their share C \ C′ as at least

max(4(n− n′)− 5, 1), so each part can be divided recursively using the 4-

walls procedure. In the hard case, all agents value C′ as less than 1 so they

value the remainder C \ C′ as at least 4n− 6; proceed to the next step.

• In step (1), the Mark auction asks each agent to mark a rectangle with a

value of exactly 1 adjacent to the rightmost edge of C. In the easy case, both

the winning bid and its complement are 2-fat rectangles. The winning bid

can be given entirely to the winner; the n − 1 losers value the remaining

cake as at least 4n− 6, which is at least max(1, 4(n− 1)− 5), so the 4-walls

procedure can be used to divide the remainder among them. In the hard

case, all agents value the rectangle [1/2, L] × [0, 1] as less than 1 so they

value the rectangle [0, 1/2] × [0, 1] as at least 4n − 6; proceed to the next

step.
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• In step (2), the Eval auction proceeds exactly as in the case of square pieces.

The values are sufficient for using the 3-walls procedure.

• In step (3), the Mark auction asks each agent to mark an L-shape with a

value of exactly 2. Let X be the winning bid. Since the winner values X as

2, he values either its topmost part or its rightmost part as at least 1; both

these parts are 2-fat rectangles so the winner can pick one of them and get a

fair share. In both cases, C \X (which is a square) can be separated from the

piece given to the winner using a horizontal guillotine cut. In both cases, the

n− 1 losers value X as at most 2 so they value C \ X as at least (4n− 5)− 2,

which is at least max(1, 4(n− 1)− 5). Therefore, the 3 walls procedure can

be used to divide C \ X among them.

• The 3-walls procedure remains unchanged.

So for every n ≥ 2 and R ≥ 2:

Prop(2 f at rectangle with all sides bounded, R f at rectangles, n) ≥ 1
4n− 5

3.5.2 Two walls

We present a division procedure for dividing the top-right quarter-plane, i.e, the

cake is a square with two walls and two unbounded sides. We would like to

do a mark auction in which each agent is asked to mark a square adjacent to the

bottom-left corner. Then, the smallest square should be allocated to its bidder and

the remaining cake should be divided among the remaining agents. However,

when we try to do this we run into trouble, as the remaining cake is no longer a

quarter-plane.

As it often happens, the solution is to generalize the problem. Instead of di-

viding a quarter-plane, we divide a rectilinear polygonal domain unbounded in two

directions, which for brevity we call “staircase” because of its shape (see Figure

3.7).

Each staircase has vertexes with inner angle 90◦ and vertexes with inner angle

270◦; we call the former corners and the latter teeth.16 A staircase with T teeth has
16Other common names are convex vertexes vs. concave/reflex vertexes, or inner corners vs. outer
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Figure 3.7: A staircase with T = 3 teeth marked by discs (Left). It has T + 1 = 4
corners and can be covered by 4 squares (Right).

T + 1 corners. A quarter-plane is a staircase with T = 0 teeth.

By putting the arrangement of Claim 3.3.3 in one of the corners and adding a

pool in each of the other T corners, the following upper bound is obtained:

Prop(T staircase, Squares, n) ≤ 1
2n− 1 + T

We normalize the valuations of all agents such that the value of the entire cake is

2n− 1 + T. We use a sequence of mark auctions to give each agent a square with

a value of at least 1.

We proceed by induction on the number of agents n. When n = 1, the cake

value for the single agent is at least T + 1. The cake can be covered by T + 1

sufficiently large squares — one square per corner (see Figure 3.7/Right). By the

Covering Lemma, the agent can get a square with a value of at least 1.

Suppose we already know how to divide a T-staircase to n − 1 agents, for

every integer T ≥ 0. Now there are n agents. Start by doing T + 1 mark auctions:

for each corner j ∈ {1, . . . , T + 1}, ask each agent to mark a square with a value

of exactly 1 adjacent to corner j. If the total value of the agent in corner j is less

than 1, then the agent is allowed to not participate in that auction, or equivalently

mark a square with an infinite side-length. By the Covering Lemma, each agent

can mark at least one finite square.

In each corner, the ”corner-winning-bid” is the smallest square (contained in

all other bids in that corner). We now have T + 1 corner-winners, and we have to

select a single global-winner. There are two cases.

corners.
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Figure 3.8: The square at corner 4 is entirely contained in the corner (left). After
it is allocated, the remaining cake is a staircase with 4 teeth and 5 corners (right).

Easy case: there is a j ∈ {1, . . . , T + 1} such that the corner-j winning-bid is

smaller than the two edges of C adjacent to corner j. An example is the square in

corner 4 in Figure 3.8. Select one such square arbitrarily as the global ”winning

bid”. Give the winning bid to its bidder. The remaining cake is a staircase with

T + 1 teeth (see Figure 3.8). The n − 1 losing agents value the allocated square

as at most 1, so they value the remaining staircase as at least (2n− 1 + T)− 1 =

2(n− 1)− 1 + (T + 1). Hence, by induction we can divide the remainder among

the losers.

Hard case: all corner-winning-bids are larger than the edges adjacent to their

corners, as in Figure 3.9. Now, when a square is allocated, the remainder is no

longer a staircase. In order to restore the staircase shape, we have to remove

an additional part of C. We do this by cutting, from the top-right corner of the

allocated square, a straight line downwards to the bottom boundary of C, and

a straight line leftwards to the leftmost boundary of C. The parts of C that are

removed besides the allocated square are called the shadows of the square. An

example is illustrated in Figure 3.9, where the square at corner 2 has two shadows

denoted by dotted lines.

We now need the following geometric lemma, which is formally stated and

proved in Appendix 3.A:

Lemma 3.5.1. (Staircase Lemma) Given a staircase in which a square is located in each

corner, there exists a square whose shadows are contained in the union of the other

squares.
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(x∗ , y∗)
1’

2’ (x∗ + l∗ , y∗ + l∗)

4

Figure 3.9: The square at corner 2 (second from the bottom-right) satisfies the
Staircase Lemma, since its ”shadows” (dotted) are contained in the other squares.
After it is allocated, the remaining cake is a staircase with 2 teeth and 3 corners
(right).

Based on the Staircase Lemma, we proceed as follows. From the T + 1 corner-

winning-bids, select one square whose shadows are contained in the other squares

(e.g. the square in corner 2 in Figure 3.9). Declare this square as the global win-

ning square, give it to its bidder, and remove its shadows from C.

We have to prove that the remaining cake is sufficiently valuable for each los-

ing agent. The number of agents changes by ∆n = −1 since the winning agent

leaves. The cake value for a losing agent changes by ∆V (a negative quantity).

The number of teeth changes by ∆T which may be positive or negative. Looking

at the value requirement V ≥ 2n+ T− 1, we see that in order to use the induction

assumption, it is sufficient to prove that for every loser:

∆V ≥ 2∆n + ∆T = ∆T − 2

I.e, the value of the remaining agents should drop by at most two units, plus one

unit for each removed tooth.

The shadows of the winning square can be partitioned to m disjoint rectangu-

lar components, to its top-left and to its bottom-right, such that each component

is located in a different corner (e.g. in Figure 3.9, m = 2). After the shadows are

removed, m teeth disappear. One tooth is added at the top-right of the winning

square. Hence, ∆T = 1−m.

The winning square is worth at most 1 for the remaining agents, since it is

contained in all other squares in its corner. By the selection of the global-winning-

bid, each of the m shadows is contained in a corner-winning-bid, so its value for
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the losing agents is at most 1. Hence, the total value of the removed region to the

n− 1 losers is at most m + 1, so ∆V ≥ −1−m = ∆T − 2, as required. Hence, by

the induction assumption we can proceed and divide the remainder among the

losers. 17

The above procedure proves that, for every n ≥ 1, T ≥ 0:

Prop(T staircase, Squares, n) =
1

2n− 1 + T

By letting T = 0 we get:

Prop(Quarter plane, Squares, n) =
1

2n− 1

3.5.3 One and zero walls

A half-plane can be divided by partitioning it to two quarter-planes:

Claim 3.5.1. For every n ≥ 2:

Prop(Hal f plane, Squares, n) ≥ 1
2n− 2

Proof. Assume the cake is the half-plane y ≥ 0 and there are n agents who value it

as 2n− 2. Do the following mark auction: ask each agent to mark a quarter-plane

open to the top-left, whose bottom edge is adjacent to the bottom edge of C and

its value is exactly 1. An example is illustrated below, where the winning bid is

— as usual — marked by thicker dots:

After the winning bid is allocated to its winner, the n− 1 losers value the remain-

ing quarter-plane as at least (2n− 2)− 1 = 2(n− 1)− 1; divide it among them

17The easy case is, in fact, contained in the hard case, since a square smaller than the edges
adjacent to its corner has an empty shadow (so m = 0). The split to easy and hard cases is done
for presentation purposes only.
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using the procedure of Subsection 3.5.2.

An unbounded plane can be divided by partitioning it to two half-planes:

Claim 3.5.2. For every n ≥ 4:

Prop(Plane, Squares, n) ≥ 1
2n− 4

Proof. Normalize the cake value to 2n − 4. Do the following mark auction: ask

each agent to mark a half-plane bounded at its bottom, with a value of exactly

2 (so each agent i marks a half-plane Yi = [−∞, ∞]× [yi, ∞]). Order the bids by

containment, so that Y1 ⊆ Y2 ⊆ · · · ⊆ Yn. Select two winners — the agents with

the two smallest bids (Y1 and Y2). Both winners value Y2 as at least 2; divide it

among them using cut-and-choose. Each of them receives a quarter-plane with

a value of at least 1. The n − 2 losers value the remaining half-plane as at least

(2n− 4)− 2 = 2(n− 2)− 2; divide it among them using the procedure of Claim

3.5.1.

The lower bounds for one and zero walls do not match the upper bounds

proved in Section 3.3: the proportionality coefficient (the coefficient of n in the

denominator) is 2 in both cases, while the coefficients in the upper bounds are

3/2 for a half-plane and almost 1 for an unbounded plane. We believe that the

procedures presented above are tight and the ”real” coefficient is 2. The reason

is that, whenever a plane is cut by even a single straight line, the remainder is a

half-plane, and when a half-plane is cut, the remainder is a quarter-plane, and for

a quarter-plane we know that the proportionality coefficient is 2. In future work

we plan to look for tighter impossibility results showing that the proportionality

coefficient is indeed 2 in half-planes and unbounded planes, too.

3.5.4 Three walls

Our next goal is to divide a square bounded by three walls. We already pre-

sented a procedure for a square with three walls in Subsection 3.5.1, but the value

guarantee of the present procedure is better and it matches the upper bound

65



b b

b
1

2

3

4

Figure 3.10: A valley with T = 3 teeth marked by discs (Left). It has T + 1 =
4 levels and can be covered by 4 squares (Right). The levels coordinates are:
[0, .1]× .8, [.1, .5]× .9, [.5, .7]× .6, [.7, 1.0]× .4. The levels are covered from bottom
to top: 4, then 3, then 1, then 2. In each level, the bottom rectangle, which is not
overlapped by higher squares, is the covering rectangle of that level.

of 1/(2n − 1). On the other hand, the present procedure uses general (non-

guillotine) cuts.

Similarly to the two-walls case, we have to generalize the problem and divide

a rectilinear polygonal domain unbounded in one direction, which for brevity we call

a “valley”. Again the number of teeth is denoted by T; see Figure 3.10.

We require the valley to have the Sunlight property, which means that light

coming from the top can reach all parts of the bottom border. In other words: no

part of the valley lies below a wall; the bottom border of a valley goes from the

left wall (at x = 0) to the right wall (at x = 1) in stairs climbing to the top-right

or bottom-right, but never back to the left. Hence a valley can be represented as

a sequence of T + 1 levels {[xmin, xmax
i ]× yi}T+1

i=1 , where (see Figure 3.10):

0 = xmin
1 < xmax

1 = xmin
2 < xmax

2 · · · < xmax
T = xmin

T+1 < xmax
T+1 = 1

Our valley-division procedure is essentially similar to the staircase-division pro-

cedure: a mark-auction is performed in each ”corner” of the valley; the smallest

bid in each corner is the corner-winning-bid; and a global winning-bid is selected

such that its ”shadows” are contained in all other bids. We have to carefully de-
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fine the ”corners” and the ”shadows”, and this requires several definitions.

The structure of a valley

For every level i ∈ {1, . . . , T + 1}, when we look from (xmin
i , yi) leftwards, we see

a wall. Let xleft
i be the x coordinate of that wall and yleft

i be the y coordinate of the

level at the top of the wall (yleft
i > yi). If (xmin

i , yi) is a bottom-left corner (such

as in levels 1 and 3 and 4 in Figure 3.10), then xleft
i = xmin

i and yleft
i = yi−1 (if

xleft
i = 0, i.e. we hit the left boundary, then we define yleft

i = 1). Otherwise (as in

level 2), xleft
i < xmin

i .

Similarly, define xright
i as the x coordinate of the wall we see at the right and

yright
i as the y coordinate of the level at the top of the wall (yright

i > yi). If (xmax
i , yi)

is a bottom-right corner (such as in levels 1 and 4 in the figure), then xright
i = xmax

i

and yright
i = yi+1 (if xright

i = 1, i.e. we hit the right boundary, then we define

yright
i = 1). Otherwise (as in levels 2 and 3), xright

i > xmax
i .

The horizontal distance between the two walls surrounding a level is denoted:

dxi := xright
i − xleft

i

In the figure, the values of dxi for the 4 levels are: 0.1, 1.0, 0.5, 0.3. The vertical

depth of a level is denoted by:

dyi := min(yright
i , yleft

i )− yi

It is the height to which one has to climb in order to move to another level, or to

exit the unit square. In the figure, the values of dyi for the 4 levels (from left to

right) are: 0.1, 0.1, 0.3, 0.2.

Initially we handle the case of a single agent. This requires a bound on the

square-cover-number of the valley, as a function of T. In general, the square-

cover-number of a valley can be arbitrarily large, e.g, if the valley has a single

level [0, 1/m]× 0, then m squares are required to cover it, for every integer m. For

our purposes, we can restrict our attention to valleys that do not have such deep

levels. Formally, we require the valley to have the Shallowness property, which
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means that for every level i:

dyi ≤ dxi

This property guarantees that the valley can be covered by at most T + 1 squares,

as we show in the following subsection.

Covering a valley with squares

Lemma 3.5.2. If C is a valley with T teeth satisfying the Shallowness property, then:

CoverNum(C, Squares) ≤ T + 1

Proof. Consider the lowest level — the level i with the smallest yi. Consider the

square:

Si := [xleft
i , xleft

i + dxi]× [yi, yi + dxi]

Because this is the lowest level, both its endpoints are inner corners, so xleft
i =

xmin
i and xleft

i + dxi = xright
i = xmax

i .

The Shallowness property guarantees that dxi ≥ dyi. Hence, yi + dxi ≥ yi +

dyi = min(yright
i , yleft

i ). Hence, Si contains the rectangle:

Ri := [xleft
i , xright

i ]× [yi, min(yleft
i , yright

i )]

Call Ri the covering rectangle of level i (see Figure 3.10/Right). If we remove from

the valley the covering rectangle of i (the lowest level), then at least one of the

teeth adjacent to it (from the left or from the right) is flattened, and we remain

with at most T − 1 teeth. In some remaining levels j, the xmin
j and xmax

j values

might change, but the xleft
j and xright

j do not change since the removed level was

lower than all surrounding levels. Hence, dxj and dyj do not change, the Shal-

lowness property is preserved, and we can continue this process iteratively until

all the valley is covered. The number of squares in the covering is at most the

number of levels, T + 1.
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The division procedure

We are now ready to present the valley-division procedure.

We normalize the valuations of all agents such that the value of the entire

valley for each agent is 2n− 1 + T. We use a sequence of mark auctions to give

each agent a square with a value of at least 1.

We proceed by induction on the number of agents n. When n = 1, the value

for the single agent is at least T + 1. By Lemma 3.5.2 the valley can be covered by

T + 1 squares, so by the Covering Lemma the agent can get a square with a value

of at least 1.

Suppose we already know how to divide a T-valley to n − 1 agents, for ev-

ery integer T ≥ 0. Now there are n agents. Start by doing 2(T + 1) mark auc-

tions. There are two auctions per level: one on the left and one on the right of

its covering rectangle. For every level i ∈ {1, . . . , T + 1}, ask each agent to mark

two squares with a value of exactly 1: a square with its bottom-left corner at the

bottom-left corner of Ri (xleft
i , yi) and a square with its bottom-right corner at

the bottom-right corner of Ri (xright
i , yi). The squares may overlap. An agent

can refrain from participating in an auction if the largest square he can mark at

this corner has a value of less than 1. By the Covering Lemma, each agent can

participate in at least one auction.

In each corner, there are at most n squares. From these, we select a small-

est square as the ”corner-winning-bid”. Now we have at most 2(T + 1) corner-

winners. The global-winner is the square with a lowest top side. I.e, if the side-

length of the i-level winning-bid is li, then the global winner is a square with a

smallest yi + li.

In the illustration below, the index of each level is written below the level.

There are squares only in 7 out of 10 corners, since no agents participated in

the auction for the corner (xleft
3 , y3) (marked with x) and for level 5. The global-

winner (marked with thicker dots) is the corner-winner at the corner (xright
1 , y1):
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In addition to the winning square, we may have to remove some other parts of

the valley, in order to ensure that the remaining valley satisfies the two properties

defined above: the Sunlight property and the Shallowness property. We have to

prove that this allocation leaves a sufficiently high value for the losing agents.

After all the removals, the number of agents changes by ∆n = −1 since one

agent leaves; the cake value for a losing agent changes by ∆V (a negative quan-

tity); and the number of teeth changes by ∆T which may be positive or negative.

Looking at the value requirement V ≥ 2n + T− 1, we see that in order to use the

induction assumption, it is sufficient to prove that for every loser:

∆V ≥ 2∆n + ∆T = ∆T − 2

so the value of each loser should drop by at most two units, plus one unit for each

removed tooth.

The following analysis depends on whether the winning square is adjacent to

a right corner (xright
i , yi) as in the illustration above, or a left corner (xleft

i , yi). The

two cases are entirely symmetric; henceforth we assume that the winning square

is adjacent to a right corner.

First, we handle the Sunlight property by cutting from the left edge of the win-

ning square down to the bottom border of C:

1

2

3

4
5

x

The winning square casts a shadow on m ≥ 0 teeth below it, which are all re-

moved. In the illustration above, m = 1. Additionally, a new tooth is added at
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the top-left of the winning square. Additionally, if the winning square is higher

than the tooth at its right (as in the figure), then that tooth is removed and a new

tooth is added at the top-right of the winning square. All in all, ∆T = 1−m.

The winning square casts a shadow on 1 + m levels. All squares of the losing

agents in these levels are higher than the winning square; hence, the shadows of

the winning square are contained in the losers’ squares, and the total value of the

shadows is at most 1 + m. All in all, ∆V ≥ −1−m = ∆T − 2, as required.

Next, we have to handle the Shallowness property by removing deep levels —

levels for which dyj > dxj or equivalently:

min(yright
j , yleft

j )− yj > xright
j − xleft

j (3.1)

This is done separately to the left and to the right of the winning square:

• A level to the left of the winning square (j < i) may become deep if the

left edge of the winning square, and the cut from that edge downwards,

becomes its rightmost wall:

xright
j ← xleft

i yright
j ← yi + li

(yi + li)− yj > xleft
i − xleft

j

• A level to the right of the winning square (j > i) may become deep if the

right edge of the winning square becomes its leftmost wall:

xleft
j ← xright

i yleft
j ← yi + li

(yi + li)− yj > xright
j − xright

i

In each side, we remove the highest deep level, and all levels below it. In the

illustration below, only level 4 (to the right of the winning square) is removed:
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By selection of the global winner: yj + lj ≥ yi + li, which implies:

lj ≥ (yi + li)− yj (3.2)

If a level j < i becomes deep, then (3.2) implies:

lj > xleft
i − xleft

j

=⇒ xleft
j + lj > xleft

i .

In addition to yj + lj ≥ yi + li, this implies that the removed rectangle [xleft
j , xleft

i ]×
[yj, min(yi + li, yleft

j )] is contained in the corner-winner: [xleft
j , xleft

j + lj]× [yj, yj +

lj]. Hence, the value of the removed rectangle is at most 1. At most one unit of

value is removed, and one tooth is removed. Hence, the balance between ∆V and

∆T is maintained.

If a level j > i becomes deep, then (3.2) implies:

lj > xright
j − xright

i

=⇒ xright
j − lj < xright

i .

In addition to yj + lj ≥ yi + li, this implies that the removed rectangle [xright
i , xright

j ]×
[yj, min(yi + li, yright

j )] is contained in the corner-winner: [xright
j − lj, xright

j ]× [yj, yj +

lj]. Hence, the value of the removed rectangle is at most 1. At most one unit of

value is removed, and one tooth is removed. The balance between ∆V and ∆T is

maintained.

Finally, we have to handle the Sunlight property again by removing all levels

below the levels removed in the previous step. We now prove that in all such

levels, no agent marked any square. Indeed, let j be a level that became deep,

and k be a level shadowed by it. So yk < yj and xleft
k > xleft

j and xright
k < xright

j .
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The side-length of any square marked in level k is at most xright
k − xleft

k , so lk <

xright
k − xleft

k < xright
j − xleft

j and:

yk + lk < yj + (xright
j − xleft

j )

Combining this with (3.1) gives:

yk + lk < min(yright
j , yleft

j ) ≤ yi + li

but this contradicts the assumption that i is the global-winning-square. Therefore,

all levels below a deep level have a value of less than 1 to all agents. At most

one unit of value is removed per level, so the balance between ∆V and ∆T is

maintained.

To summarize: after allocating the winning square to the winner and remov-

ing some parts of the valley, we have a new valley with T + ∆T teeth satisfying

the Sunlight and the Shallowness properties, and each losing agent values it as at

least ((2n− 1+T)+∆V) ≥ ((2n− 1+T)+ (∆T− 2)) = 2(n− 1)− 1+(T+∆T).

Therefore, by the induction assumption we can continue to divide it among the

n− 1 losers.

The above procedure proves that, for every n ≥ 1, T ≥ 1:

Prop(T valley, Squares, n) =
1

2n− 1 + T

A square with 3 walls is a valley with no teeth. It obviously satisfies the Sun-

light property and the Shallowness property. Letting T = 0 in the above formula

yields:

Prop(Square with three walls, Squares, n) =
1

2n− 1

matching the upper bound.
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Remark

We divided a 2-walls square by generalizing it to a ”staircase”, and divided a 3-

walls square by generalizing it to a ”valley”. The natural next step is to divide

a 4-walls square by generalizing it to a rectilinear polygon. This is a much more

challenging task even for a single agent. The algorithmic problem of finding a

minimal square-covering for a rectilinear polygon has been solved by Bar-Yehuda

and Ben-Hanoch (1996), and we believe that their algorithm can be used for de-

veloping a rectilinear polygon division procedure. However, this algorithm is

much more complicated than our covering algorithm of Subsection 3.5.4, so the

division procedure will probably also be much more complicated.

In the next subsection we present a procedure for dividing a square using a

different approach, which works only when the value measures are identical.

3.5.5 Four walls, guillotine cuts, identical valuations

Our procedures for identical valuations differ from the other procedures in that

they do not use auctions, since all agents would make the same bids anyway.

We develop simultaneously a pair of division procedures. Both procedures

accept a cake C which is assumed to be the rectangle [0, 1] × [0, L], and a single

continuous value measure V. They return some disjoint square pieces {Xi} such

that for every i: V(Xi) ≥ 1.

The two procedures differ in their requirement on L (the height/length ratio

of the cake) and in the number of “walls” (bounded sides) they assume on the

cake:

• The fat-procedure requires that L ∈ [1, 2] (i.e, the cake is a 2-fat rectangle) and

it guarantees that all allocated squares are contained in C;

• The thin-procedure requires that L ∈ [2, ∞) (i.e, the cake is a ”2-thin” rectan-

gle) and it returns one of the following two outcomes:

1. n− 1 squares contained in C (i.e, bounded by the 4 walls of the cake),

or -
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2. n squares contained in [0, ∞]× [0, L], i.e, bounded by only 3 walls but

may flow over the rightmost border. Every square that flows over the

rightmost border is guaranteed to have its leftmost edge adjacent to

the leftmost edge of C and its side-length at most L− 1 (the longer side

of the cake minus its shorter side), so that all squares are contained in

[0, L− 1]× [0, L].

Additionally, the two procedures differ in their requirement on the total cake

value:

• The fat-procedure requires that V(C) ≥ 2n.

• The thin-procedure requires that V(C) ≥ 2n− 2.

The procedures are developed by induction on n. We first consider the base case

n = 1:

• In the fat-procedure, the cake value is 2 and the cake is 2-fat, so by the

Covering Lemma it contains a square with a value of at least 1.

• The thin-procedure can just return an empty set. This is an instance of the

first outcome — n− 1 squares contained in C.

We now assume that both procedures work well for any number less than n.

Given n ≥ 2, we proceed as in the following subsections.

Henceforth, we make the following positivity assumption: every piece with

positive area has positive value. This assumption is only for convenience: it sim-

plifies the presentation and reduces the number of cases to consider. It can be

dropped by adding sub-cases to each case in the procedures.

Fat procedure

At this point, the cake is a 2-fat rectangle with width 1 and height L ∈ [1, 2]. Its

total value is 2n, and n ≥ 2.

For every integer u ∈ [0, 2n], let yu be the value y ∈ [0, L] such that the cake

below y has value u: V([0, 1]× [0, yu]) = u. By the positivity assumption, yu is

unique, y0 = 0 and y2n = L ≥ 1. Therefore, there exists a smallest k ∈ [1, n] such
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that: y2k ≥ 1/2. Let Bottom := [0, 1]× [0, y2k] = the cake below y2k; note that it is

a 2-fat rectangle. Let Top := C \ Bottom = [0, 1]× [y2k, L] = the cake above y2k.

We have V(Bottom) = 2k and V(Top) = 2(n− k). Now there are two cases:

Case A: L − y2k ≥ 1/2 (this implies k < n). Thus Bottom and Top are both

2-fat rectangles:

L

0

y2k

← TopV = 2(n− k)

← BottomV = 2k

Apply the fat procedure to Bottom and Top and get k + (n − k) = n squares

contained in C.

Case B: L− y2k <
1
2 , so Bottom is 2-fat and Top is 2-thin. Now consider y2k−2.

By definition of k, y2k−2 < 1
2 . Let Bottom′ := [0, 1] × [0, y2k−2] and Top′ :=

C \ Bottom′ = [0, 1] × [y2k−2, L], so V(Bottom′) = 2(k − 1) = V(Bottom) − 2

and V(Top′) = 2(n − k + 1) = V(Top) + 2. Note that Bottom′ is 2-thin and is

contained in Bottom, and Top′ is 2-fat and contains Top:

L

0

y2k

y2k−2

V = 2(n− k)

V = 2

V = 2(k− 1)

← Top

← Bottom′ ← Bottom

← Top′

Because here n ≥ 2, either n − k ≥ 1 or k − 1 ≥ 1 or both. Hence, at least

one of the two 2-thin parts (Top, Bottom′) is non-empty and with value at least 2.

Use the thin procedure to divide the non-empty thin part/s. In each part there are

two possible outcomes: a smaller number of squares within 4 walls or a larger

number of squares within 3 walls. There are several cases to consider.

— One easy case is that we get the 4-walls outcome in at least one of the parts

— either in Top or in Bottom′ or in both. Suppose that we get the 4-walls outcome
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in Bottom′. So we have k − 1 squares within the 4 walls of Bottom′. Ignore the

outcome on Top and apply the fat procedure to Top′. This results in n − k + 1

additional squares, so we have the required n squares. The situation is analogous

if we get the 4-walls outcome in Top.

— Another easy case is that we get the 3-walls outcome in one part, and the

other part is empty. Suppose that Top is empty (this implies k = n) and we get

the 3-walls outcome in Bottom′. So we have (k − 1) + 1 = n squares contained

in [0, 1]× [0, 1− y2k−2] ⊆ C, as required. The situation is analogous if Bottom′ is

empty and we get the 3-walls outcome in Top.

— The hard case is that both Top and Bottom′ are non-empty and the thin

procedure on both of them returns the 3-walls outcome. Now we have k bottom

squares and n− k + 1 top squares, for a total of n + 1 squares, e.g:

L

0

y2k

y2k−2

← Top

← Bottom′

A potential problem in the last step is that some of the squares might overlap:

some top squares might flow over the lower boundary of Top and overlap a bot-

tom square, or some bottom squares might flow over the upper boundary of Bot-

tom’ and overlap a top square. To prevent an overlap, we remove a single square

— the largest of the n+ 1 squares (dashed square in the illustration above) — and

return the remaining n squares.

It remains to prove that, indeed, after the largest square is removed, the re-

maining n squares do not overlap. The proof is purely geometric and it is dele-

gated to Appendix 3.B.

Thin procedure

At this point, the cake is a 2-thin rectangle with width 1 and height L ∈ [2, ∞). Its

total value is 2n− 2, and n ≥ 2. The procedure is allowed to return one of two

outcomes:
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Outcome #1: n − 1 squares bounded by the 4 walls of C, i.e, contained in

[0, 1]× [0, L], or —

Outcome #2: n squares bounded by the 3 walls of C, i.e, contained in [0, ∞]×
[0, L]. In this case, every square that flows over the rightmost border must have

its leftmost edge adjacent to the leftmost edge of C (the edge x = 0), and its side-

length must be at most L− 1 (the longer side of C minus its shorter side). This

means that all n squares must be contained in [0, L− 1]× [0, L].

We first handle the case n = 2, in which V = 2.

Select y ∈ [0, L] such that V([0, 1] × [0, y]) = V([0, 1] × [y, L]) = 1. Proceed

according to the value of y:

L

0

L− 1
1

y

V = 1

V = 1

L

0

L− 1
1

y

V = 1

L

0

L− 1
1

y
V = 1

• If y ∈ [1, L − 1] (left) then return the two squares [0, y] × [0, y] and [0, L −
y]× [y, L]. Both squares are in [0, L− 1]× [0, L] with their left side at x = 0;

this is an instance of outcome #2.

• If y ∈ [0, 1) (middle) then return [0, 1]× [0, 1]; if y ∈ (L− 1, L] (right) then

return [0, 1]× [L− 1, L]. Both cases are instances of outcome #1.

From now on we assume that n ≥ 3.

For every u ∈ [0, 2n− 2], define yu as the value y ∈ [0, L] such that the cake

below y has value u: V([0, 1]× [0, yu]) = u. By the positivity assumption, yu is

unique and y0 = 0 and y2n−2 = L. Therefore, there exists a smallest k ∈ [1, n− 1]

such that: y2k ≥ 1
2 . Mark the cake below y2k ([0, 1]× [0, y2k]) as Bottom and the

part above it ([0, 1] × [y2k, L]) as Top. We have V(Bottom) = 2k and V(Top) =

2(n− k− 1).

Now there are two cases:

Case A: L− y2k ≥ 1
2 (this implies k < n− 1). Thus each of Bottom and Top is

either 2-fat, or 2-thin with its longer side facing rightwards.
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L

0

y2k

← Top

V = 2(n− k− 1)

← Bottom
V = 2k

Apply the fat procedure or the thin procedure, whichever is appropriate, to Bottom

and Top. In each part there are two possible outcomes: a smaller number of

squares within 4 walls, or a larger number of squares within 3 walls.

— If we get the 4-walls outcome in both parts, then we have k + (n− k− 1) =

n− 1 squares within the 4 walls of C, which is an instance of Outcome #1.

— If we get the 4-walls outcome in one part and the 3-walls outcome in the

other part, then we have k + (n − k) = n or (k + 1) + (n − k − 1) = n squares

within 3 walls. By the induction assumption, the thin procedure guarantees that

all squares flowing over the rightmost border have their leftmost edge adjacent

to the leftmost wall x = 0, and their side-length at most the longer side minus

the shorter side. Here, the longer side of both Bottom and Top is less than L and

their shorter side is 1, so all these squares are contained in [0, L − 1] × [0, L], so

we have an instance of Outcome #2.

— If we get the 3-walls outcome in both parts, then we have k + (n− k) + 1 =

n + 1 squares within 3 walls. We can discard one square arbitrarily and remain

with n squares as in the above case, which is again an instance of Outcome #2.

Case B: L − y2k < 1
2 , so Bottom is 2-fat or 2-thin facing rightwards, and Top

is 2-thin facing downwards. Now consider y2k−2. By definition of k, y2k−2 < 1
2 .

let Bottom′ = [0, 1] × [0, y2k−2] and Top′ = [0, 1] × [y2k−2, L], so V(Bottom′) =

2(k − 1) = V(Bottom) − 2 and V(Top′) = 2(n − k) = V(Top) + 2. Note that

Bottom′ is 2-thin facing upwards and is contained in Bottom, and Top′ is 2-fat or

2-thin facing rightwards and contains Top:
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L

0

y2k

y2k−2

← TopV = 2(n− k− 1)

V = 2

V = 2k− 2 ← Bottom′ ← Bottom

← Top′

At this point n ≥ 3, so either n − k − 1 ≥ 1 or k − 1 ≥ 1 or both. Hence, at

least one of the two thin parts facing downwards/upwards (Top, Bottom′) is non-

empty and with value at least 2. Use the thin procedure on the non-empty part/s

facing downwards/upwards. In each part there are two possible outcomes: a

smaller number of squares within 4 walls or a larger number of squares within 3

walls. There are several cases to consider.

— One easy case is that we get the 4-walls outcome in at least one of the parts

— either in Top or in Bottom′ or in both. Suppose that we get the 4-walls outcome

in Bottom′ (the situation is analogous if we get the 4-walls outcome in Top). So

we have k− 1 squares within the 4 walls of Bottom′. We ignore the outcome on

Top and proceed to get additional squares from Top′. Apply to Top′ either the fat

procedure (if it is 2-fat) or the thin procedure (if it is 2-thin facing rightwards).

One possibility is that we get n− k additional squares contained in Top′; then we

have a total of n− 1 squares contained in C, which is an instance of Outcome #1.

Another possibility is that we get n− k + 1 additional squares bounded by only

three walls of Top′; by the induction assumption and the guarantees of the Thin

Procedure, the squares that flow over the rightmost border of Top′ are adjacent to

its leftmost wall, which coincides with the leftmost wall of C. Their side-length

is at most the longer side-length of Top′ minus its shorter side-length; the longer

side-length of Top′ is less than L and its shorter side-length is 1, so the side-length

of all the additional squares is at most L− 1, and we have an instance of Outcome

#2.

— Another easy case is that we get the 3-walls outcome in one part, and the

other part is empty. Suppose that Top is empty (this implies k = n− 1) and we get

the 3-walls outcome in Bottom′. So we have (k− 1)+ 1 = n− 1 squares contained

in [0, 1]× [0, 1− y2k−2] ⊆ C, which is an instance of Outcome #1. The situation is
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analogous if Bottom′ is empty and we get the 3-walls outcome in Top.

— The hard case is that both Top and Bottom′ are non-empty and the thin pro-

cedure on both of them returns the 3-walls outcome. We now have the following

squares:

• k ≥ 1 bottom squares in [0, 1]× [0, 1− y2k−2];

• n− k ≥ 1 top squares in [0, 1]× [L− 1 + (L− y2k), L].

Because L ≥ 2, no squares overlap:

L

0

y2k

y2k−2

← Top

← Bottom′

We now have n squares within the 4 walls of C, which is more than we need for

Outcome #1.

The guarantees of the Fat Procedure imply that, for all n ≥ 2:

PropSame(Square with 4 walls, Squares, n) ≥ 1
2n

which exactly matches the upper bound of Claim 3.3.4.

Fat rectangle pieces

When the pieces are allowed to be R-fat rectangles, the above lower bound is of

course still valid. But when R ≥ 2, the Fat Procedure can give a slightly stronger

guarantee - the required value is 2n− 1 instead of 2n (the Thin Procedure is un-

changed). The required modifications in the Fat Procedure are briefly explained

below:

• In the base case (n = 1), the cake value is 1 and it is 2-fat, so the procedure

returns the entire cake as a single piece.
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• In the main procedure (n ≥ 2), we first try to cut the cake horizontally to

two 2-fat rectangles and apply the Fat Procedure to each of them. For this,

we need to find some y ∈ [1/2, L− 1/2] such that the value below y is at

least 2k− 1 and the value above y is at least 2(n− k)− 1, for some integer

k ≥ 1. Then, both the part below y and the part above y are 2-fat. By

the induction assumption, the Fat Procedure finds k 2-fat-rectangles in the

bottom part and n− k 2-fat-rectangles in the top part, so we are done.

• If we cannot find such y, this means that for all y ∈ [1/2, L− 1/2] and every

integer k′, either the value below y is less than 2k′− 1 or the value above y is

less than 2(n− k′)− 1. But the latter condition implies that the value below

y is more than 2k′, so the condition becomes: for all y ∈ [1/2, L− 1/2] and

every integer k′, the value below y is either less than 2k′ − 1 or more than

2k′. So for all y ∈ [1/2, L− 1/2], the value below y is in the open interval

(2k− 2, 2k− 1) for some integer k ≥ 1. This means that the cake looks like

this, for some integer k:

L

0

y2k−2
V = 2(k− 1)

y2k−1
V = 2(n− k)

V = 1

← Top

← Bottom′ ← Bottom

← Top′

where y2k−2 < 1/2 and y2k−1 > L− 1/2. Hence, the parts Top := [0, 1]×
[y2k−1, L] and Bottom′ := [0, 1]× [0, y2k−2] are both 2-thin rectangles (one of

these parts may be empty). V(Top) = 2(n− k) and V(Bottom′) = 2(k− 1).

This is exactly the same situation as in Case B of the original procedure.

We can now apply the Thin Procedure to Top and to Bottom′ and proceed

according to the outcomes.

Therefore, for all n ≥ 2 and R ≥ 2:

PropSame(Square with 4 walls, R f at rectangles, n) ≥ 1
2n− 1
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which exactly matches the upper bound of Claim 3.3.15.

Remark

The above procedures work only when the value measures are identical. The

main reason is that the Thin procedure may return one of two outcomes. When

there is a single value measure, the returned outcome is unique. But when there

are different value measures, each value measure may induce a different out-

come, and the different outcomes may be incompatible.

3.5.6 Compact cakes of any shape

As explained in Subsection 3.1.1, when the cake can be of an arbitrary shape,

Prop(C, S, n) may be arbitrarily small. Hence it makes sense to assess the fairness

of an allocation for a particular agent relative to the total utility that this agent

can get in an S-piece when given the entire cake. This intuition is captured by

the following definition. It is an analogue of Definition 3.2.1, the only difference

being that the normalization factor is the cake utility VS(C) instead of the cake

value V(C):

Definition 3.5.3. (Relative proportionality) For a cake C, a family of usable pieces S

and an integer n ≥ 1:

(a) The relative proportionality level of C, S and n, marked RelProp(C, S, n), is the

largest fraction r ∈ [0, 1] such that, for every set of n value measures (Vi, ..., Vn),

there exists an S-allocation (X1, ..., Xn) for which ∀i : Vi(Xi)/VS
i (C) ≥ r.

(b) The same-value relative proportionality level of C, S and n, marked RelPropSame(C, S, n),

is the largest fraction r ∈ [0, 1] such that, for every single value measure V, there

exists an S-allocation (X1, ..., Xn) for which ∀i : V(Xi)/VS(C) ≥ r.

Our first result involves parallel squares.

Claim 3.5.3. For every cake C which is a compact subset of R2:

RelProp(C, Parallel squares, n) ≥ 1
8n− 6
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Proof. We normalize the valuations of all agents such that, for every agent i,

VS
i (C) = 8n− 6. We show a division procedure giving each agent a square with

a value of at least 1.

(1) Preparation: Each agent i draws a “best square” in C — a square qi that

maximizes Vi. The existence of such a square can be proved based on the com-

pactness of the set of squares in C; this is done in Appendix 3.C. By definition of

the utility function VS, for every i: Vi(qi) = VS
i (C) = 8n− 6.

(2) Mark auction: Let N := 4n − 3. Ask each agent i to mark, inside qi, N

pairwise-disjoint parallel squares with a value of 1 (the agent can do so by us-

ing the division procedure for identical value measures described in Subsection

3.5.5: this procedure finds N squares in qi, each of which has a value of at least

Vi(qi)/(2N) = 1). Let Qi be the collection of N squares marked by i.

An agent’s bid is interpreted as saying ”I am willing to give my entitlement

to a piece of C in exchange for any square in Qi”. Our goal now is to allocate to

each agent i a single piece from the collection Qi such that the n allocated pieces

are pairwise-disjoint.

(3) Winner selection: a smallest square in ∪iQi is selected as the winning bid

(if there several smallest squares, one is selected arbitrarily). Denote the selected

smallest square by q∗ and suppose it belongs to agent i. Agent i now receives q∗

and goes home.

(4) Bid adjustment: For each agent j 6= i, remove from Qj all squares that

overlap q∗. Since the squares in Qj are all pairwise-disjoint and not smaller than

q∗, the number of squares removed is at most 4. This is based on the following

geometric fact: given a square q, there are at most 4 parallel squares that are larger

than q, overlap q and do not overlap each other. This is because each square larger

than q which overlaps q, must overlap one of its 4 corners, so there can be at most

4 such squares:
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After the removal, each of the remaining n− 1 agents has a collection of at least

4(n− 1)− 3 squares. If only a single agent remains, then his collection contains

at least 1 square; allocate this square to the single agent and finish. Otherwise, go

back to step (3) and select the next winner from the remaining n− 1 agents.

Finally, each agent i ∈ {1, . . . , n} holds a square from the collection Qi. This

square has a value of at least 1, which proves the claim.

The proof of Claim 3.5.3 can be generalized to other families of usable pieces:

Claim 3.5.4. For a family of pieces S, define:

• OS = the largest number of pairwise-disjoint S-pieces that overlap an S-

piece with a smaller diameter.

• PropSame(S, S, n) = infC∈S PropSame(C, S, n).

Then for every compact cake C and every n ≥ 1:

RelProp(C, S, n) ≥ PropSame(S, S, OS · (n− 1) + 1)

The proof is exactly the same as that of Claim 3.5.3, with only the constant

4 replaced by OS, 3 replaced by OS − 1 and the function 1/(2N) replaced by

PropSame(S, S, N).

When S is the family of general (rotated) squares, OS = 8:18

Corollary 3.5.4. For every cake C which is a compact subset of R2:

RelProp(C, Squares, n) ≥ 1
16n− 14

18We are grateful to Mark Bennet, Martigan, calculus, Red, Peter Woolfitt and Dejan Govc for
their help in calculating this number in http://math.stackexchange.com/q/1085687/29780 . Im-
age credit: Dejan Govc. Licensed under CC-BY-SA 3.0.
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When S is the family of parallel R-fat rectangles, OS = d2R + 2e:

Corollary 3.5.5. For every cake C which is a compact subset of R2:

RelProp(C, Parallel R f at rectangles, n) ≥ 1
2d2R + 2e(n− 1) + 2

For completeness, we present the following trivial result regarding identical

value measures:

Claim 3.5.5. For every cake C which is a compact subset of R2:

RelPropSame(C, Squares, n) =
1

2n

Proof. Suppose the value measure of all n agents is V. Let q be a best square in C

— a square that maximizes V. By definition of the utility function, V(q) = VS(C).

Because q is a square, it is possible to allocate within it n disjoint squares with a

value of at least V(q)/(2n) = VS(C)/(2n).

Remarks

1. The constant OS — the largest number of pairwise-disjoint S-pieces that over-

lap an S-piece with a smaller diameter — has been used for developing approx-

imation procedures for the problem of finding a maximum non-overlapping set

(Marathe et al., 1995). The approximation factors are not tight. For example, for

n = 2, in step (b) we create 4n− 3 = 5 axis-parallel squares for each agent, but

it is possible to prove that 3 squares per agent suffice for guaranteeing that a pair

of disjoint squares exists. Hence, RelProp(C, Axis parallel squares, n = 2) ≥ 1/6.

What is the smallest number of squares required to guarantee the existence of n

disjoint squares? This open question is interesting because it affects both the pro-

portionality coefficient in our fair cake-cutting procedure and the approximation

coefficient in the maximum disjoint set algorithm of Marathe et al. (1995).

2. The Winner Selection procedure (step 3 in the proof) can be used even when

the value functions of the agents are not additive or even not monotone (i.e. some

parts of the land have negative utility to some agents). As long as every agent can

draw N disjoint squares, the procedure guarantees that he receives one of these
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pieces.

3. Iyer and Huhns (2009) present a division procedure in which each agent

marks n desired rectangles. Their goal is to allocate each agent a single desired

rectangle. However, because the rectangles might be arbitrarily thin, it is possible

that a single rectangle will intersect all other rectangles. In this case, the proce-

dure fails and no allocations are returned. In contrast, our procedure requires the

agents to draw fat pieces. This guarantees that it always succeeds.

3.6 Conclusions and Future Work

This chapter laid the foundations for fair cake-cutting with geometric constraints.

This topic has a large potential for future research. Some possible directions are

suggested below.

3.6.1 Open questions

We would like to close the gaps between the possibility and impossibility results

in Tables 3.1 and 3.2. The most interesting gap, in our opinion, is related to an

unbounded plane. Our impossibility result assumes that the squares are parallel

to each other; if the squares are allowed to rotate arbitrarily, then we do not have

an impossibility result, and we do not know whether a proportional division is

possible.

Based on our current results, and some other results which we had to omit

in order to keep the paper length at a reasonable level, we make the following

conjecture:

Conjecture. When a cake C is divided to n agents each of whom must receive a fat

rectangle, the attainable proportionality is:

1
2n + Geom(C)

Where Geom(C) is a (positive or negative) constant that depends only on the geometric

shape of the cake.
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In other words: the move from a one-dimensional division to a two-dimensional

division asymptotically decreases the fraction that can be guaranteed to every

agent by a factor of 2.

Another direction is extending the results to cakes in three or more dimen-

sions. We have some preliminary results in this direction.

It may be interesting to study cakes of different topologies, such as cylinders

and spheres. We mention, in particular, the following potentially practical open

question: is it possible to divide Earth (a sphere) in a fair-and-square way?

3.6.2 Different geometric constraints

The present chapter focused on constraints related to geometric shape — square-

ness or fatness. One could also consider constraints related to size, e.g. by defin-

ing the family S to be the family of all rectangles of length above 10 meters or

area above 100 square meters. A problem with these constraints is that they are

not scalable. For example, if the cake is 200-by-200 meters and there is either a

length-minimum of 10 or an area-minimum of 100, then it is impossible to divide

the land to more than 400 agents. Governments often cope with this problem

by putting an upper bound on the number of people allowed to settle in a cer-

tain location. However, this limitation prevents people from taking advantage

of new possibilities that become available as the number of people increases. For

example, while in rural areas a land-plot of less than 10-by-10 meters may be con-

sidered useless because it cannot be efficiently cultivated, in densely populated

cities even a land-plot as small as 2-by-2 meters can be used as a parking lot for

rent or as a lemonade selling spot. Limiting the number of agents assures that

each agent gets a land-plot that can be cultivated efficiently, but it may prevent

more profitable ways of using the land-plots. In contrast, the squareness/fatness

constraint is scalable because it does not depend on the absolute size of the land-

cake. It is equally meaningful in both densely and sparsely populated areas.

The division problem can be extended by allowing each agent to have a dif-

ferent geometric constraint (a different family S of usable shapes) or even to

have utility functions which combine different families of usable shapes (with

an agent-specific weight for each family).
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Finally, the two auction types used by our procedures (see Subsection 3.1.2)

can possibly be generalized. For example, it may be interesting to see what can be

attained if each agent receives two entitlements instead of one. This is common in

some rural settlements, in which each settler receives two plots — one for housing

and one for farming.
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4

(x∗ , y∗)

Figure 3.11: a. A staircase with T = 3 teeth and T + 1 = 4 corners and a square
in each corner. The diagonal (dashed) represents tj — the taxicab distance from
the origin to the square center. The square at corner 2 is the winning square as its
taxicab distance is minimal (the diagonal is closest to the origin).
b. The shadow of the winning square (dotted). Note that each rectangular com-
ponent of the shadow is entirely contained in the square of the corresponding
corner.

Chapter 3 Appendix

3.A Staircase Lemma

This appendix proves the following geometric lemma, which is used in Section

3.5.2:

Lemma 3.A.1. (Staircase Lemma) Let C be a staircase-shaped polygonal domain with

T teeth (and T + 1 corners). Suppose that in each inner corner j ∈ {1, . . . , T + 1},
with coordinates (xj, yj), there is a square with side-length lj (the square [xj, xj + lj]×
[yj, yj + lj]).

Define the shadow of square j as the intersection of C with the rectangle [0, xj + lj]×
[0, yj + lj] (this is the area of C that is removed when cutting from the top-right corner of

square j towards the bottom and left boundaries of C; see Figure 3.11/b).

There exists a corner j such that the shadow of square j is contained in the union of

the T + 1 squares.

Proof. For every j ∈ {1, . . . , T + 1}, define:

tj := xj + yj + lj
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tj can be interpreted as the ”taxicab distance” (`1 distance) from the origin to

the center of the square at corner j, or equivalently to its bottom-right or top-left

corner;

Define the winning square as the square j for which tj is minimized. Denote its

corner coordinates by (x∗, y∗) and its side-length by l∗. We now prove that the

shadows of the winning square are contained in the other squares. We decompose

the shadows of the winning square to pairwise-disjoint rectangular components

in the following way.

• For each corner j to the top-left of the winning square, the component is a

rectangle with coordinates: [xj, x∗]× [yj, y∗ + l∗]. Note that this component

is empty if yj ≥ y∗ + l∗, as in corner 4 in Figure 3.11.

• For each corner j to the bottom-right of the winning square, the component

is a rectangle with coordinates: [xj, x∗ + l∗] × [yj, y∗]. This component is

empty if xj ≥ x∗ + l∗.

By definition of the winning square, for every j ∈ {1, . . . , T + 1}:

xj + yj + lj ≥ x∗ + y∗ + l∗ (3.3)

Now:

• For each corner j to the top-left of the winning square, we have xj < x∗.

Combining this with (3.3) gives y∗ + l∗ < yj + lj. Moreover, if the compo-

nent in that corner is not empty, then necessarily yj < y∗ + l∗. Combining

this with (3.3) gives x∗ < xj + lj. Hence, the component [xj, x∗]× [yj, y∗+ l∗]

is contained in the square [xj, xj + lj]× [yj, yj + lj].

• For each corner j to the bottom-right of the winning square, we have yj <

y∗. Combining this with (3.3) gives x∗ + l∗ < xj + lj. Moreover, if the com-

ponent in that corner is not empty, then necessarily xj < x∗+ l∗. Combining

this with (3.3) gives y∗ < yj + lj. Hence, the component [xj, x∗+ l∗]× [yj, y∗]

is contained in the square [xj, xj + lj]× [yj, yj + lj].

We proved that every component of the shadow of the winning square is con-
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tained in one of the T + 1 squares; hence, the winning square satisfies the re-

quirement of lemma.

3.B Non-intersection of Squares in Fat Procedure

This appendix proves that in the last step of the Fat Procedure (Subsection 3.5.5),

the n returned squares do not overlap.

Recall that at this step, the cake has two distinguished regions: Bottom′ :=

[0, 1] × [0, yb] and Top := [0, 1] × [yt, L], both of which are 2-thin rectangles, i.e,

0 < yb < 1/2 ≤ L− 1/2 < yt < L. In each region there is a family of squares:

the bottom squares were returned by applying the Thin Procedure to Bottom’, and

the top squares were returned by applying the Thin Procedure to Top. The squares

in each family are pairwise-disjoint, but squares from different families might

overlap. Our goal is to prove that, after a single largest square is removed, the

remaining squares do not overlap, as in the following illustration:

L

0

← Top
yt

yb
← Bottom′

Recall that, by the specification of the Thin Procedure (Subsection 3.5.5), the squares

in each family can be divided to two types, which we call ”doves” and ”hawks”:

• Doves are squares generated by Outcome #1 of the Thin Procedure (or by

recursive calls to the Fat Procedure). They are contained within the four

walls of their rectangle: the bottom doves are contained in [0, 1] × [0, yb],

and the top doves are contained in [0, 1]× [yt, L].

• Hawks are squares generated by Outcome #2 of the Thin Procedure. They

are contained within only three walls of their rectangle, with one of their

edges adjacent to the wall opposite the open side: the bottom edge of all

bottom hawks is at y = 0, and the top edge of all top hawks is at y = L.

Moreover, the side-length of each hawk is at most the longer side of its
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rectangle minus the shorter side of its rectangle; hence, the side-length of

all bottom hawks is at most 1− yb and their top edge is in y ∈ [yb, 1− yb],

and the side-length of all top hawks is at most 1− (L− yt) and their bottom

edge is in y ∈ [L− (1− L + yt), yt].

Claim 3.B.1. In each family, the sum of the side-lengths of all hawks is at most 1.

Proof. The bottom hawks are all bounded in a rectangle of length 1: [0, 1]× [0, 1−
yb]. Their bottom side is at y = 0. Since they do not overlap, the sum of their side-

lengths must be at most 1. A similar argument holds for the top hawks.

An immediate corollary of Claim 3.B.1 is that at most one hawk from each side

has side-length more than 1/2. We call each of these two hawks (if it exists) the

dangerous hawk.

We say that a square q attacks a square q′ if q is larger than q′ and q overlaps q′.

This is possible only if q and q′ are in two opposite families, since the squares in

each family are pairwise-disjoint. The doves obviously do not attack each other

because yb < yt. So the only possible attacks are: top hawks attacking bottom

hawks/doves, or bottom hawks attacking top hawks/doves.

After removing the largest square, at most one dangerous hawk remains; it

is only this hawk that might attack other squares in the opposite side. We now

prove that even this dangerous hawk does not attack other squares.

Claim 3.B.2. No remaining hawk attacks any dove.

Proof. We prove that no remaining hawk even enters the rectangle of the opposite

family (no remaining bottom-hawk enters Top and no remaining top-hawk enters

Bottom′). Since all doves are contained in their rectangle, they are safe. There are

two cases:

Case 1: yt ≥ L − yb. Then also yt ≥ 1 − yb. The side-length of all bottom

hawks is at most 1 − yb, so no bottom hawk enters Top. If the top dangerous

hawk enters Bottom′, then its side-length must be more than L− yb, so it is larger

than all bottom hawks. Hence, it is the largest square and it is removed.

Case 2: yt < L− yb. Then also 1− (L− yt) < 1− yb ≤ L− yb. The side-length

of all top hawks is at most 1− (L− yt), no top hawk enters Bottom′. If the bottom
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dangerous hawk enters Top, then its side-length must be more than yt, so it is

larger than all top hawks. Hence, it is the largest square and it is removed.

Claim 3.B.3. No remaining hawk attacks any hawk.

Proof. There are two cases:

Case 1: There is only one hawk (either bottom or top) with side-length more

than 1/2. This is the largest square so it is removed. The remaining squares have

side-length at most 1/2 and thus do not attack each other.

Case 2: There are two hawks (bottom and top) with side-length more than

1/2. W.l.o.g, assume the top hawk is the largest, with a side-length of ht ≥ hb. By

Claim 3.B.1, the sum of the side-lengths of all other top hawks is at most 1− ht,

hence the side-length of any single other top hawk is at most 1− ht which is at

most 1 − hb which is at most L − hb. Hence, the bottom side of all remaining

top hawks is above hb. Hence the remaining bottom hawk cannot attack any of

them.

3.C Existence of Best Pieces

This appendix shows how to prove the existence of a usable piece with a maxi-

mum value (this is used in the proof of Claim 3.5.3). We start by defining a metric

space of pieces (recall that a piece is a Borel subset of R2 and Area is its Lebesgue

measure).

Definition 3.C.1. The symmetric difference (SD) pseudo-metric is defined by:

dSD(X, Y) = Area[(X \Y) ∪ (Y \ X)]

dSD is not a metric because there may be different pieces whose symmetric

difference has an area of 0, e.g, a square with an additional point and a square

with a missing point. To make SD a metric, we consider only pieces X that are

regularly open, i.e, the interior of the closure of themselves: X = Int[Cl[X]].

Claim 3.C.1. SD is a metric on the set of all regularly-open pieces.
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Proof. 19 Let X and Y be two regularly-open sets such that dSD(X, Y) = 0. We

prove that X = Y.

dSD(X, Y) = 0 implies Area[X \Y] = Area[Y \ X] = 0.

Y ⊆ Cl[Y] so X \Y ⊇ X \ Cl[Y]. Hence also Area[X \ Cl[Y]] = 0.

X is open and Cl[Y] is closed; hence X \ Cl[Y] is open (it is an intersection of

two open sets).

The only open set with an area of 0 is the empty set (because any non-empty

open set contains a ball with a positive measure). Hence: X \ Cl[Y] = ∅.

Equivalently: X ⊆ Cl[Y].

By taking the Cl of both sides: Cl[X] ⊆ Cl[Y]

By a symmetric argument: Cl[Y] ⊆ Cl[X]

Hence: Cl[Y] = Cl[X]

By taking the Int of both sides and by the fact that they are regularly-open:

Y = X.

Thus when we allocate a square we actually allocate only its interior. This has

no effect on the utility of the agents since the boundary has an area of 0 and so its

value is 0 for all agents.

Claim 3.C.2. Let D be the metric space defined by dSD. Let V be a measure abso-

lutely continuous with respect to area. Then V is a uniformly continuous function

from D to R.

Proof. The fact that V is an absolutely continuous measure implies that, for every

ε > 0 there is a δ > 0 such that every piece X with Area(X) < δ has V(X) < ε

(Nielsen, 1997, Proposition 15.5 on page 251). Hence, for every two pieces X and

Y, if dSD(X, Y) < δ then Area(X \Y) < δ and Area(Y \X) < δ, then V(X \Y) < ε

and V(Y \ X) < ε, then |V(X)−V(Y)| = |V(X \Y)−V(Y \ X)| < ε.

Claim 3.C.3. Let V be a measure absolutely continuous with respect to area and Q

a set of pieces which is compact in the SD metric space. Then there exists a piece

q ∈ Q for which V is maximized.

19We are thankful to Tony K., Phoemue X., Dafin Guzman, Henno Brandsma and Ittay
Weiss for contributing to this proof via discussions in the math.stackexchange.com website
(http://math.stackexchange.com/a/1099461/29780).
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Proof. By the previous claim, V is a uniformly continuous and hence a continuous

real-valued function. By the extreme value theorem, it attains a maximum in

every compact set.

The value measures considered in this paper are always absolutely continuous

with respect to area. Hence, to prove that a certain set of pieces Q contains a “best

piece” it is sufficient to prove that Q is compact. We do this now for the special

case in which Q is the set of open squares contained in a given cake (note that the

same proof could be used for the set of closed squares):

Claim 3.C.4. Let C be a closed, bounded subset of R2. Let Q be the set of all open

squares contained in C. Then Q is compact in the SD metric space.

Proof. It is sufficient to prove that Q is sequentially compact, i.e. every infinite

sequence of open squares in C has a subsequence converging to an open square

in C. Let {qi}∞
i=1 be an infinite sequence of open squares in C. For every qi, let

(Ai, Bi) be a pair of opposite corners. Because C is compact, it contains Cl[q] and

hence contains the points Ai and Bi. Hence the infinite sequence of pairs of points,

{(Ai, Bi)}∞
i=1, is an infinite sequence in C× C. C× C is compact because it is a fi-

nite product of compact sets. Hence, the sequence has a subsequence converging

to a limit point (A∗, B∗) ∈ C. From now on we assume that {(Ai, Bi)}∞
i=1 is that

converging subsequence. Let q∗ be the open square having A∗ and B∗ as two op-

posite corners. We show that: (a) q∗ is an open square in C; (b) The subsequence

{qi}∞
i=1 converges to q∗.

(a) q∗ is a obviously an open square by definition. We have to show that each

point in q∗ is also a point of C. To every square qi, attach a local coordinate system

in which corner Ai has coordinates 0, 0 and corner Bi has coordinates 1, 1 and

every other point in Cl[qi] has coordinates in [0, 1]× [0, 1]. For every coordinate

(x, y) ∈ [0, 1] × [0, 1], let qi(x, y) be the unique point with these coordinates in

Cl[qi] (e.g. Ai = qi(0, 0) and Bi = qi(1, 1)).

For every (x, y), The sequence {qi(x, y)}∞
i=1 is a sequence of points which are

all in C, and they converge to q∗(x, y). Since C is closed, q∗(x, y) ∈ C.

(b) For every i, the area of the symmetric difference between q∗ and qi is
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bounded and satisfies the following inequality:

dSD(q∗, qi) ≤ 4 ·max(d(A∗, Ai), d(B∗, Bi)) ·max(d(A∗, B∗), d(A∗, Bi), d(Ai, B∗), d(Ai, Bi))

Since all distances are bounded and d(A∗, Ai), d(B∗, Bi) converge to 0, the same

is true for dSD(q∗, qi). Hence, the subsequence {qi}∞
i=1 converges to q.

The previous paragraph proved that Q is sequentially compact. Hence it is

compact.

In a similar way it is possible to prove similar results for other families S, such

as the family of R-fat rectangles or cubes.

3.D Non-Rectangular Pieces

In the main body of this chapter, the usable pieces were fat rectangles. Interest-

ingly, we can get better results and simpler procedures by expanding the family

of usable pieces to include other 2-fat polygons with angles that are multiples 45

degrees. We call such polygons 2-FFDPs (2-fat Forty-Five Degree Polygons).20

Our procedure is based on the following geometTric facts:

1. A right-angled isosceles triangle (RAIT) is a 2-FFDP.

2. Both a RAIT and a square can be partitioned into two congruent halves,

each of which is a RAIT.

3. Each RAIT half in such a partition can be shrunk by translating the division

line towards one of the corners, such that the smaller piece is a RAIT and

the larger piece is a 2-FFDP.

We present a procedure for dividing a cake that can be either a RAIT or a

square. The procedure requires that for every agent i: Vi(C) ≥ max(1, 2n− 2). It

returns n disjoint 2FFDPs {Xi}n
i=1 such that for every agent i: Vi(Xi) ≥ 1.

The procedure is developed by induction on the number of agents. When

there is a single agent (n = 1), he can just be given the entire cake, which is a

20This idea was suggested by Galya Segal-Halevi.
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2FFDP with value at least 1. We now assume that we can handle any number of

agents less than n. Now there are n agents (n ≥ 2), each of whom values C as at

least 2n− 2. We proceed as follows.

(1) Eval auction. Cut C to two congruent RAITs: C′ and C′′:

C′

C′′

C′

C′′

Do an eval auction on C′. Order the agents in a descending order of their bid,

V1(C′) ≥ · · · ≥ Vn(C′), and let n′ be the largest integer with:

Vn′(C′) ≥ max(2n′ − 2, 1)

If n′ = n then all agents value C′ as the entire cake, so the other parts of the cake

can be discarded and the division procedure can start again with C′ as the cake.

Hence, we assume that n′ < n. There are two main cases to consider:

• Easy case: 1 ≤ n′ ≤ n− 2. Make a diagonal guillotine cut between C′ and

C′′. Divide C′ recursively among the n′ winners.

The n − n′ losers value C′ as less than max(2(n′ + 1)− 2, 1) = 2n′, so the

value the remainder C′′ as at least (2n − 2) − 2n′ = 2(n − n′) − 2. Since

n− n′ ≥ 2, this value is also larger than 1, so we can divide C′′ recursively

among the n− n′ losers.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1, so they

value C′′ as more than 2n− 1.

We have to shrink C′′ towards the corner, until one of the agents decides

that it is better to take a piece outside C′′ and leave C′′ to the remaining

n − 1 agents. This solution is implemented using a mark auction, which is

described in step (2) below. But before proceeding there is one more case

that must be handled:
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• Mixed case: n′ = n − 1. This is handled according to the bid of the single

losing agent (agent n): if Vn(C′) < 2n− 1, then the losing agent values C′′

as more than 1, so we can proceed as in the Easy case (the winning agents

receive C′ and the losing agent receives C′′). Otherwise, Vn(C′) ≥ 2n− 1,

so all agents value C′ as at least 2n− 1 (because the agents are ordered in

descending order of their bid). Switch the roles of C′ and C′′ and proceed as

in the hard case to the next auction.

(2) Mark auction. Ask each agent to mark a 2FFDP with a value fo exactly 1,

whose complement is a RAIT adjacent to the corner of C′:

The winning bid (marked by thicker dots above) is a 2FFDP. It can be given to the

winner, who values it as exactly 1 so i

The remaining cake is a RAIT and its value for the remaining n− 1 agents is

at least V(C)− 1 ≥ 2n− 1 ≥ max(2(n− 1)− 2, 1). Divide it recursively among

the losers.

This procedure proves:

Claim 3.D.1. For every n ≥ 2:

Prop(RAIT, 2 FFDPs, n) ≥ 1
2n− 2

Prop(Square, 2 FFDPs, n) ≥ 1
2n− 2

The procedure is clearly much simpler than when the pieces must be fat rect-

angles (as in Subsection 3.5.1) and the proportionality coefficient is better. In other

words, it is easier to divide a cake fairly when 45-degree polygons are allowed.

This might explain why practical land allocation maps usually contain more than

just rectangles.
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A preliminary version of this chapter appeared in the proceedings of AAAI 2015 (Segal-

Halevi et al., 2015a).

4.1 Introduction

In the previous chapter we focused on a single measure of fairness: proportional-

ity. Our aim was to guarantee all agents a certain fraction of their total cake value,

and we tried to make this fraction as large as possible.

In the present chapter we add a second measure of fairness: envy-freeness. Our

aim now is to make sure that each agent believes that his/her allocated piece is

at least as good as any other piece.

Envy-freeness on its own is trivially satisfied by the empty allocation. The task

becomes more interesting when envy-freeness is combined with an efficiency cri-

terion. The most common such criterion is Pareto efficiency. Indeed, Weller (1985)

has proved that, when the agents’ preferences are represented by non-atomic

measures, there always exists a competitive-equilibrium with equal-incomes, and

the equilibrium allocation is both Pareto-efficient and envy-free. However, Weller’s

equilibrium allocation gives no guarantees about the geometric shape of the al-

lotted pieces. A “piece” in his allocation might even be a union of a countable
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(a) (b) (c)

Figure 4.1: A square land-estate has to be divided between two people. The land-
estate is mostly barren, except for three water-pools (discs). The agents have the
same preferences: each agent wants a square land-plot with as much water as
possible. The squares must not overlap. Hence:
(a) It is impossible to give both agents more than 1/3 of the water. Hence:
(b) An envy-free division must give each agent at most 1/3 of the water.
(c) But such a division cannot be Pareto-efficient since it is dominated by a divi-
sion which gives one agent 1/3 and the other 2/3 of the water.
Hence, a Pareto-efficient envy-free allocation does not exist.

number of disconnected cake-bits. So, Weller’s positive result is valid only when

the agents’ preferences ignore the geometry of their allotted pieces. While such

preferences may make sense when dividing an actual edible cake, they are not so

sensible when dividing land.

Berliant and Dunz (2004) have studied a multi-dimensional cake model. Their

results are mostly negative: when general value measures are combined with ge-

ometric preferences, a competitive-equilibrium might not exist. In fact, even re-

gardless of competitive-equilibrium, a Pareto-efficient-envy-free allocation might

not exist, as we show in Figure 4.1.

Thus, to get an envy-free allocation among agents with geometric preferences,

we must replace Pareto-efficiency with a different efficiency criterion. A natural

candidate is proportionality — every agent should receive at least 1/n of the total

cake value. Since with geometric preferences, a proportional division does not

always exist (see Figure 4.1), we relax the proportionality requirement and con-

sider partial proportionality. Partial proportionality means that each agent receives

a piece worth at least a fraction p of the total cake-value, where p is a positive

constant, 0 < p ≤ 1/n (see definition in section 2.5 in page 12). Obviously we

would like p to be as large as possible.

In the previous chapter, we showed that partial-proportionality can be at-
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tained in various geometric settings. For example, when there is a square cake

and two agents who want square pieces, each agent can be guaranteed at least

a fraction 1/4 of the total cake-value, and this is the largest fraction that can be

guaranteed. However, these results did not consider envy. This raises the follow-

ing question, which is at the heart of the present chapter:

When each agent wants a piece with a given geometric shape, what is

the largest fraction of the cake-value that can be guaranteed to every

agent in an envy-free allocation?

The following example shows that existing cake-cutting procedures are insuffi-

cient for answering this question.

Example 4.1.1. You and a partner are going to divide a square land-estate. It is

100-by-100 square meters and its western side is adjacent to the sea. Your desire

is to build a house near the sea-shore. You decide to use the classic procedure for

envy-free division: “You cut, I choose”. You let your partner divide the land to

two plots, knowing that you have the right to choose the plot that is more valu-

able according to your personal preferences. Your partner makes a cut parallel

to the shoreline at a distance of only 1 meter from the sea. 1 Which of the two

plots would you choose? The western plot contains a lot of sea shore, but it is so

narrow that it has no room for building anything. On the other hand, the eastern

plot is large but does not contain any shore land. Whichever plot you choose, the

division is not proportional for you, because your utility is far less than half the

utility of the original land estate.

Of course the cake could be cut in a more sensible way (e.g. by a line per-

pendicular to the sea), but the current division procedures say nothing about

how exactly the cake should be cut in each situation in order to guarantee that

the division is fair in a way that respects the geometric preferences. While the

cut-and-choose procedure still guarantees envy-freeness, it does not guarantee

partial-proportionality since it does not guarantee any positive utility to agents

who want square pieces.

1The reason why he decided to cut this way is irrelevant since a fair division procedure is
expected to guarantee that the division is fair for every agent playing by the rules, regardless of
what the other agents do.
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This paper presents cake-cutting procedures that guarantee both envy-freeness

and partial-proportionality. Our procedures focus on agents who want fat pieces

— pieces with a bounded length/width ratio, such as squares (see definition in

subsection 2.6 on page 14). The rationale is that a fat shape is more convenient to

work with, build on, cultivate, etc.

4.1.1 Results

We prove that envy-freeness and partial-proportionality are compatible in progres-

sively more general geometric scenarios. Our proofs are constructive: in every ge-

ometric scenario (geometric shape of the cake and preferred shape of the pieces),

we present a procedure that divides the cake with the following guarantees:

• Envy-freeness: every agent weakly prefers his/her allotted piece over the

piece given to any other agent.

• Partial-proportionality: every agent receives a piece worth for him at least a

fraction p of his total cake-value, where p is a positive constant that depends

on the geometric requirements.

In the following theorems, the partial-proportionality guarantee p is given in

parentheses.

Theorem 4.1. When dividing a cake to two agents, there is a procedure for finding an

envy-free and partially-proportional allocation in the following cases:

(a) The cake is square and the usable pieces are squares (p ≥ 1/4).

(b) The cake is an R-fat rectangle and the usable pieces are R-fat rectangles, where

R ≥ 2 (p ≥ 1/3).

(c) The cake is an arbitrary R-fat object and the pieces are 2R-fat, where R ≥ 1

(p ≥ 1/2).

Value-shape trade-off: Theorem 4.1 illustrates a multiple-way trade-off be-

tween value and shape. Consider two agents who want to divide a square land-

estate with no envy. They have the following options:

• By projecting a 1-dimensional division obtained by any classic cake-cutting

procedure, they can achieve a proportional allocation (a value of at least
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1/2) with rectangular pieces but with no bound on the aspect ratio — the

pieces might be arbitrarily thin.

• By (a), they can achieve an allocation with square pieces but only partial

proportionality — the proportionality might be as low as 1/4.

• By (b), they can achieve a proportionality of 1/3 with 2-fat rectangles, which

is a compromise between the previous two options.

• By (c), they can achieve an allocation that is both proportional and with 2-fat

pieces, but the pieces might be non rectangular.

The proportionality constants in Theorem 4.1 are tight in the following sense: it is

not possible to guarantee an allocation with a larger proportionality, even if envy

is allowed. This means that envy-freeness is compatible with the largest possible

proportionality — we don’t have to compromise on proportionality to prevent

envy.

Our second theorem extends these results to any number of agents.

Theorem 4.2. When dividing a cake to n agents, there is a procedure for finding an

envy-free and partially-proportional allocation in the following cases:

(a) The cake is square and the usable pieces are squares (p ≥ 1/(4n2)).

(b) The cake is an R-fat rectangle and the usable pieces are R-fat rectangles, where

R ≥ 1 (p ≥ 1/(4n2)).

(c) The cake is a d-dimensional R-fat object and the pieces are dn1/deR-fat,2 where

d ≥ 2 and R ≥ 1 (p ≥ 1/n).

Value-shape trade-off: Part (a) and part (c) are duals in the following sense:

• Part (a) guarantees an envy-free division with perfect pieces (squares) but

compromises on the proportionality level;

• Part (c) guarantees an envy-free division with perfect proportionality (1/n)

but compromises on the fatness of the pieces.

The “magnitude” of the first compromise is 4n, since the proportionality drops

from 1/n to 1/(4n2). We do not know if this magnitude is tight: we know that it

2dxe denotes the ceiling of x — the smallest integer which is larger than x.
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is possible to attain a division with square pieces and a proportionality of 1/O(n)

which is not necessarily envy-free Segal-Halevi et al. (2015c), but we do not know

if a proportionality of 1/O(n) is compatible with envy-freeness.

The “magnitude” of the second compromise is dn1/de. This magnitude is

asymptotically tight. We prove that, in order to guarantee a proportional division

of an R-fat cake, with or without envy, we must allow the pieces to be Ω(n1/d)R-

fat.

4.1.2 Related Work

(See also the Related Work subsection in the previous chapter, page 26).

The main challenge in two-dimensional cake-cutting is that utility functions

that depend on geometric shape are not additive. For example, consider an agent

who wants to build a square house the utility of which is determined by its area.

The utility of this agent from a 20× 20 plot is 400, but if this plot is divided to

two 20 × 10 plots, the utility from each plot is 100 and the sum of utilities is

only 200. Most existing procedures for proportional cake-cutting assume that the

valuations are additive, so they are not applicable in our case. While there are

some previous works on cake-cutting with non-additive utilities, they too cannot

handle geometric constraints:

• Berliant et al. (1992); Maccheroni and Marinacci (2003) focus on sub-additive,

or concave, utility functions, in which the sum of the utilities of the parts is

more than the utility of the whole. These utility functions are inapplicable in

our scenario because, as illustrated in the previous paragraph, utility func-

tions that consider geometry are not necessarily sub-additive — the sum of

the utilities of the parts might be less than the utility of the whole.

• Dall’Aglio and Maccheroni (2009) do not explicitly require sub-additivity,

but they require preference for concentration: if an agent is indifferent between

two pieces X and Y, then he prefers 100% of X to 50% of X plus 50% of Y.

This axiom may be incompatible with geometric constraints: the agent in

the above example is indifferent between the two 20× 10 rectangles, but he
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prefers 50% of their union (the 20× 20 square) to 100% of a single rectangle.3

• Sagara and Vlach (2005); Hüsseinov and Sagara (2013) consider general

non-additive utility functions but provide only non-constructive existence

proofs.

• Su (1999); Caragiannis et al. (2011); Mirchandani (2013) provide practical

division procedures for non-additive utilities, but they crucially assume that

the cake is a 1-dimensional interval and cannot handle two-dimensional

constraints.

When envy-free division protocols are applied to agents with non-additive utility

functions, the division is still envy-free, but the utility per agent might be arbi-

trarily small. This is true for cut-and-choose (as shown in Example 4.1.1 above)

and it is also true for all other procedures for envy-free division that we are aware

of (Stromquist (1980); Brams and Taylor (1995); Reijnierse and Potters (1998); Su

(1999); Barbanel and Brams (2004); Manabe and Okamoto (2010); Cohler et al.

(2011); Deng et al. (2012); Kurokawa et al. (2013); Chen et al. (2013); Aziz and

Mackenzie (2016)).

Our way to cope with this challenge is to explicitly handle the geometric con-

straints in the procedures. The main tool we use is the geometric knife function.

Moving-knife procedures have been used for envy-free cake-cutting since its

earliest years (Dubins and Spanier, 1961; Stromquist, 1980; Brams et al., 1997;

Saberi and Wang, 2009). For example, consider the following simple procedure

for envy-free division among two agents. A referee moves a knife slowly over the

cake, from left to right. Whenever an agent feels that the piece to the left of the

knife is worth for him exactly half the total cake value, he shouts ”stop!”. Then,

the cake is cut at the current knife location, the shouter receives the piece to its

left and the non-shouter receives the piece to its right.

In this paper we formalize the notion of a knife and add geometric constraints

guaranteeing that the final pieces have both the desired geometric shape and a

sufficiently high value.

3We are grateful to Marco Dall’Aglio for his help in clarifying this issue.
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Cake Pieces Agents Impossibility Possibility
Square Squares 2 1/4 1/4

R-fat rectangle R-fat rectangles (R ≥ 2) 2 1/3 1/3
R-fat object 2R-fat objects 2 1/2 1/2

Square Squares n 1/(2n) 1/(4n2)
R-fat rectangle R-fat rectangles n 1/(2n− 1) 1/(4n2)

R-fat object dn1/deR-fat objects n 1/n 1/n

Table 4.1: Summary of results for geometric envy-free division: upper and lower
bounds on the level of attainable proportionality.

4.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal defini-

tions).

• C is the cake to be divided. In this chapter it will be a square or a fat object

in Rd.

• S is the family of pieces that are considered usable. An S-piece is an element

of S. In this chapter it will be the family of squares or of fat objects.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece

Xi.

• For each agent i ∈ {1, . . . , n}, VS
i (Xi) is agent i’s utility of the piece Xi. It is

the value-measure of the most valuable S-piece contained in Xi.

When the utilities of all agents are determined by S-value functions, we can re-

strict our attention to allocations in which each agent receives an S-piece. An

S-allocation is a vector of n S-pieces X = (X1, ..., Xn), one piece per agent, such

that the Xi are pairwise-disjoint and their union is contained in C.

An S-allocation X is called envy-free if the utility of an agent from his allocated

S-piece is at least as large as his utility from every piece allocated to another agent:

∀i, j ∈ {1, ..., n} : VS
i (Xi) ≥ VS

i (Xj)

In addition to envy-freeness, an allocation is assessed by the the fraction of the

total cake value that is given to each agent. An allocation is called proportional
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if every agent receives a piece worth for him at least 1/n of the total cake value.

Since a proportional S-allocation does not always exist (see e.g. Figure 4.1), we

define:

Definition 4.2.1. For a cake C, a family of usable pieces S and an integer n ≥ 1, the

envy-free proportionality of C, S and n, marked PropEF(C, S, n), is the largest

fraction p ∈ [0, 1] such that, for every set of n value measures (Vi, ..., Vn), there

exists an envy-free S-allocation (X1, ..., Xn) for which: 4

∀i :
Vi(Xi)

Vi(C)
≥ p

This is very similar to the definition of Prop(C, S, n) - Definition 3.2.1 on page 29.

The only difference is that in Prop(C, S, n), the supremum is taken over all allo-

cations, and in PropEF(C, S, n), the supremum is taken only on envy-free allo-

cations. Obviously, because the supremum in PropEF(C, S, n) is taken over a

smaller set:

∀C, n, S : PropEF(C, S, n) ≤ Prop(C, S, n)

This means that, in theory, if we want to guarantee that there is no envy, we may

have to ”pay” in terms of proportionality. One of the goals of the present research

is to study if and how much we may have to pay.

Classic cake-cutting results imply that for every cake C:

Prop(C, All, n) = PropEF(C, All, n) = 1/n

where All is the collection of all pieces. That is: when there are no geometric

constraints, every cake can be divided among every group of n agents in an envy-

free allocation in which the utility of each agent is at least 1/n.

Our challenge in the rest of this paper will be to establish bounds on PropEF(C, S, n)

for various combinations of C and S. All our possibility results (lower bounds)

are on PropEF(C, S, n) and therefore are also valid for Prop(C, S, n). Similarly, all

4Shortly: PropEF(C, S, n) = infV supX mini Vi(Xi)/Vi(C), where the infimum is on all combi-
nations of n value measures (V1, ..., Vn), the supremum is on all envy-free S-allocations (X1, ..., Xn)
and the minimum is on all agents i ∈ {1, ..., n}.
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a. V(C)
VS(C) =

3
2

Loss(C, S) ≥ 3
2

b. V(C)
VS(C) = 2

Loss(C, S) = 2
c. V(C)

VS(C) unbounded

Loss(C, S) = ∞

Figure 4.2: Geometric loss factors relative to the family of squares.

the impossibility results (upper bounds) proved in section 3.3 on page 30 are for

Prop(C, S, n) and therefore are also valid for PropEF(C, S, n).

4.3 Geometric Preliminaries

Example 4.1.1 illustrates that, in order to achieve a fair division that respects the

geometric preferences, we should constrain the ways in which agents are allowed

to cut the cake. This requires several definitions of geometric concepts, which are

the topic of the present section.

4.3.1 Geometric loss

A key geometric concept in our analysis is the geometric loss — the maximum

factor by which the utility of an agent can be reduced by his insistence on using

pieces only from family S.

Definition 4.3.1. For a piece C and family of usable pieces S, the geometric loss

factor of C relative to S is:

Loss(C, S) := sup
V

V(C)
VS(C)

where the supremum is over all finite absolutely-continuous value measures V

having VS(C) > 0. If there is no supremum, then we write Loss(C, S) = ∞.

When C ∈ S the loss is 1, which means is no loss, since in this case VS(C) =

V(C). When C /∈ S, the loss is generally larger than 1. For example, if C is a 30-

by-20 rectangle. The largest square contained in C is 20-by-20. Hence, if the value
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density is uniform over C (as in Figure 4.2/a), then V(C)
VS(C) = 600

400 = 3
2 , implying

that Loss(C, Squares) ≥ 3/2. But the loss may be larger: suppose V is uniform

over the right and left sides of C (as in Figure 4.2/b). In this case V(C)
VS(C) = 2,

implying that Loss(C, Squares) ≥ 2. As we will see in Subsection 4.3.3, the loss

in this case is exactly 2, and in general the loss of a rectangle with a length/width

ratio of L is dLe; a thinner rectangle has a larger loss.

For some combinations of C and S, the geometric loss factor might be infinite.

For example, if C is a circle and that V is nonzero only in a very narrow strip

near the perimeter (as in Figure 4.2/c), any square contained in C intersects the

valuable strip only in the corners. and the intersection might be arbitrarily small.

Hence, VS(C) might be arbitrarily small and Loss(C, Squares) = ∞.

4.3.2 Chooser Lemma

We now relate the geometric loss factor to cake partitions. Our goal is to prove

that, if a cake is partitioned such that the sum of the geometric losses of its parts

is sufficiently small, then an agent can choose at least one part with a large value.

Formally:

Lemma 4.3.2. For every cake C, integer m, partition X1 t · · · t Xm = C, family S and

value measure V:

∃j : VS(Xj) ≥
V(C)

∑m
i=1 Loss(Xi, S)

Proof. Denote the denominator in the right-hand side by:

Loss(X, S) :=
m

∑
i=1

Loss(Xi, S)

By additivity of V:

m

∑
i=1

V(Xi) = V(C) (4.1)
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Multiply both sides of (4.1) by the Loss(X, S) = ∑m
i=1 Loss(Xi, S):

m

∑
i=1

V(Xi) · Loss(X, S) =
m

∑
i=1

Loss(Xi, S) ·V(C)

By the pigeonhole principle, at least one of the m summands in the left-hand side

must be greater than or equal to the corresponding summand in the right-hand

side. I.e., there exists j for which:

V(Xj) · Loss(X, S) ≥ Loss(Xj, S) ·V(C)

By Definition 4.3.1 and the definition of supremum, for every value measure V:

Loss(Xj, S) ≥ V(Xj)

VS(Xj)

Combining the above two inequalities yields:

V(Xj) · Loss(X, S) ≥ V(Xj) ·V(C)
VS(Xj)

which is equivalent to:

VS(Xj) ≥
V(C)

Loss(X, S)

Motivated by the Chooser Lemma and its proof, we define the expression

Loss(X, S) := ∑m
i=1 Loss(Xi, S) as the geometric loss of the partition X. The Chooser

Lemma implies that smaller geometric-loss is better for the chooser. This is easy

to see in Example 4.1.1, where a 100-by-100 land-estate is divided using cut-and-

choose:

• A partition to 100-by-1 and 100-by-99 rectangles has a geometric loss of 102

(the loss of the 100-by-1 sliver is 100 and the loss of the 100-by-99 rectangle

is 2). Hence, the utility guarantee for a chooser who wants square pieces is

only 1/102.

• In contrast, a partition to two 100-by-50 rectangles has a geometric loss of 4
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(2+2). By Lemma 4.3.2, the chooser can always get a square with a utility of

at least 1/4.

We will often use this simple implication of the Chooser Lemma:

Corollary 4.3.3 (Chooser Corollary). Suppose a cake-partition has a geometric loss of

at most M. Each of two agents chooses a best piece, and the choices are different. Then

the resulting allocation is envy-free, and each agent’s value is at least 1/M of the total

cake-value.

4.3.3 Cover Numbers and Cover Lemma

Since smaller geometric loss is better, it is useful to have an upper bound on the

geometric loss. Our upper bound uses the Cover Number — see Definition 3.4.3

on page 47.

Lemma 4.3.4. For every cake C and family S:

Loss(C, S) ≤ CoverNum(C, S)

Proof. Let m = CoverNum(C, S). By definition of CoverNum, there are m S-

pieces X1, ..., Xm, possibly overlapping, that cover the cake C:

X1 ∪ X2 ∪ ...∪ Xm = C

Let V be any value measure. By additivity:

V(X1) + V(X2) + ... + V(Xm) ≥ V(C)

By the pigeonhole principle, there is at least one piece Xi ∈ S with:

V(Xi) ≥ V(C)/m

On the other hand, since Xi is an S-piece contained in C, its value is bounded by

the supremum VS:

VS(C) ≥ V(Xi)

114



Loss(KC , Rectangles) = 2
a. Loss(KC , Squares) = ∞

Loss(KC , Rectangles) = 4
b. Loss(KC , Squares) = 4

b

Loss(KC , Rectangles) = 3
c. Loss(KC , Squares) = 3

Loss(KC , Rectangles) = 3
d. Loss(KC , Squares) = 4

Loss(KC , Rectangles) = 3
e. Loss(KC , Squares) = ∞

Figure 4.3: Several knife functions. The area filled with horizontal lines marks
KC(t) in a certain intermediate time t ∈ (0, 1). Dotted lines mark future knife
locations.

Combining the above two inequalities yields:

VS(C) ≥ V(C)/m

Combining this into the definition Loss(C, S) = supV
V(C)

VS(C) , yields:

Loss(C, S) ≤ sup
V

V(C)
V(C)/m

= sup
V

m = m

By Definition 4.3.1, for every value measure V: VS(C) ≥ V(C)
Loss(C,S) . By Lemma

4.3.4, this implies VS(C) ≥ V(C)
CoverNum(C,S) . Thus, for example, in the 30 × 20

rectangle of Figure 4.2, CoverNum(C, Squares) = 2 so Loss(C, Squares) ≤ 2 so

VS(C) ≥ V(C)/2. This means that every agent, with any value measure, can get

from C a utility of at least half its total value.

4.3.4 Knife functions

Moving knives have been used to cut cakes ever since the seminal paper of Du-

bins and Spanier (1961). We generalize the concept of a moving knife to handle

geometric shape constraints.
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Definition 4.3.5. Given a cake C, a knife function on C is a function KC from the real

interval [0, 1] to pieces of C with the following monotonicity property: for every

t′ ≥ t, KC(t′) ⊇ KC(t).

If KC(0) = C0 and KC(1) = C1, where C0 ⊆ C1 ⊆ C, we say that KC is a knife

function from C0 to C1.

The complement of KC, marked KC, is defined by:

KC(t) := C \ KC(t)

Some examples are shown in Figure 4.3.

A knife function KC on a cake C can be used to attain an envy-free division of

C between two agents:

Generic Knife Procedure

Each agent i ∈ {A, B} selects a time ti ∈ [0, 1] such that:

VS
i (KC(ti)) = VS

i (KC(ti))

Rename the agents, if needed, such that tA ≤ tB.

Select any time t∗ ∈ [tA, tB].

Give KC(t∗) to agent A and KC(t∗) to agent B.

This procedure obviously generates an envy-free division, since it gives to

each agent a piece worth for him at least as much as the other piece. The challenge

is in the first step: we must be sure that each agent i can, indeed, select a time ti

such that the S-values on both sides of the knife are equal. This requires that

both VS
i (KC(t)) and VS

i (KC(t)) change continuously as a function of t. Hence, we

define:

Definition 4.3.6. Given a family S of usable shapes, a knife-function K is called

S-good if for every absolutely-continuous value-measure V, both VS(K(t)) and

VS(K(t)) are continuous functions of t.

How can we find S-good knife-functions? In Appendix 4.A, we define two
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different properties of knife-functions, each of which is a sufficient condition for

S-goodness:

• S-smoothness means that the Lebesgue measure of K(t) is a continuous func-

tion of t, and that both K(t) ∈ S and K(t) ∈ S. For example, the knife-

function in Figure 4.3/a is rectangle-smooth (but not square-smooth).

• S-continuity means (informally) that all S-pieces in K(t) grow continuously

and all S-pieces in K(t) shrink continuously; no S-piece with a positive area

is created abruptly in K(t) and no S-piece with a positive area is destroyed

abruptly in K(t). All knife-functions in Figure 4.3 are square-continuous

(and also rectangle-continuous).

See Appendix 4.A for formal definitions, proofs and additional examples.

With an S-good knife, the Generic Knife Procedure can be executed:

Lemma 4.3.7. Let C be a cake and C0, C1 pieces such that: C0 ⊆ C1 ⊆ C. Let KC be an

S-good knife-function from C0 to C1. Assume that an agent has a value function V such

that:

• VS(C0) ≤ VS(C \ C0)

• VS(C1) ≥ VS(C \ C1)

Then there exists a time ti ∈ [0, 1] in which the utilities on both sides of the knife are

equal:

VS(KC(ti)) = VS(KC(ti))

Proof. When t = 0:

VS(KC(t)) = VS(C0) ≤ VS(C \ C0) = VS(KC(t))

and when t = 1:

VS(KC(t)) = VS(C1) ≥ VS(C \ C1) = VS(KC(t))

117



Since KC is S-good, by Definition 4.3.6 both VS(KC(t)) and VS(KC(t)) are con-

tinuous functions of t. Hence the lemma follows from the intermediate value

theorem.

4.3.5 Geometric loss of knife functions

When a knife function KC is “stopped” at a certain time t ∈ [0, 1], it induces a

partition of the cake C to the part which was already covered by the knife, KC(t),

and the part not covered, KC(t). Based on this partition, the geometric loss of the

knife can be defined:

Definition 4.3.8. Let C be a cake, KC a knife function on C and S a family of pieces.

Define the geometric loss of KC as:

Loss(KC, S) = sup
t∈[0,1]

(
Loss(KC(t), S) + Loss(KC(t), S)

)

Whenever a knife is stopped, the resulting partition has a geometric loss of

at most Loss(KC, S). Therefore, we can expect such a knife to be useful for fairly

dividing a cake among agents who want S-pieces.

Recall that the smallest possible Loss of a single piece is 1 (which means ”no

loss”); hence the smallest possible loss of a knife function is 1+1=2. Some exam-

ples are illustrated in Figure 4.3, from left to right:

(a) Let C = [0, L]× [0, 1] and KC(t) = [0, L]× [0, t]. Both KC(t) and its com-

plement are rectangles so their geometric loss relative to the family of rectan-

gles is 1. Hence Loss(KC, Rectangles) = 1 + 1 = 2. In contrast, the geomet-

ric loss of these rectangles relative to the family of squares is unbounded, so:

Loss(KC, Squares) = ∞.

(b) Let C = [0, 1]× [0, 1] and KC(t) = [0, t]× [0, t] ∪ [1− t, 1]× [1− t, 1]. For

every t, KC(t) is a union of two squares and its complement is also a union of two

squares. By the Cover Lemma, each such union has a geometric loss of 2 (relative

to the family of squares). Hence, Loss(KC, Squares) = 2 + 2 = 4.

(c) Let C be the top-right quarter-plane and S the family of squares and quarter-

planes (we consider a quarter-plane to be a square with infinite side-length). De-

fine: KC(t) = [0, x/(1− x)]× [0, x/(1− x)]. KC(t) is a square and its complement
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can be covered by two quarter-planes, so the geometric loss of KC is 1+2=3.

(d) Let C = [0, 2]× [0, 2] and KC(t) = [0, t]× [0, t]. Note that KC(0) = ∅ and

KC(1) = [0, 1]× [0, 1] = the bottom-left quarter of C. For every t, KC(t) is a square

and its complement is an L-shape, similar to the L-shapes in Figure 3.6, which

can be covered by 3 squares. Hence, Loss(KC, Squares) = 3 + 1 = 4.

(e) Let C = [0, 2]× [0, 2], C1 = C \ [0, 1]× [0, 1] (an L-shape), and KC(t) = C1 ∩
([0, 2]× [0, t/2]). This is a knife-function from ∅ to C1; it covers C1 continuously

from bottom to top. The partition can be covered by at most 2+1=3 rectangles,

but its square-loss is not bounded.

Lemma 4.3.9. (Knife Lemma) Let C be a cake and C0, C1 pieces such that: C0 ⊆ C1 ⊆ C.

Let KC be an S-good knife-function from C0 to C1. If there are two agents and for every

agent i:

- VS
i (C0) ≤ VS

i (C \ C0) and

- VS
i (C1) ≥ VS

i (C \ C1),

then C can be divided using the Generic Knife Procedure (see Subsection 4.3.4) and every

agent playing by the rules is guaranteed an envy-free share with a utility of at least:

max
(

VS
i (C0), VS

i (C \ C1),
1

Loss(KC, S)

)

Proof. Consider an agent, say Alice, who plays by the rules and declares a time

tA for which VS
A(KC(tA)) = VS

A(KC(tA)). Denote this equal utility by U. There

are two cases: if tA ≤ t∗ ≤ tB, then Alice receives KC(t∗), which contains KC(tA).

Otherwise, tB ≤ t∗ ≤ tA, and Alice receives KC(t∗), which contains KC(tA) (be-

cause KC is monotonically increasing). In both cases, Alice feels no envy and

receives a utility of at least U. This utility is bounded from below in three ways:

(a) U ≥ VS(C0), because the piece KC(ti) contains C0.

(b) U ≥ VS(C \ C1), because the complement piece KC(ti) contains C \ C1.

(c) U ≥ 1/Loss(KC, S) by the Chooser Lemma, since the loss of the partition

is at most Loss(KC, S).

Note that the Generic Knife Procedure is discrete: it does not need to con-

tinuously move the knife until an agent shouts “stop”; the agents are asked in

advance in what time they would like to “stop the knife”.
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The Chooser Lemma and the Knife Lemma are the main tools we use to con-

struct division procedures.

4.4 Envy-Free Division for Two Agents

4.4.1 Squares and rectangles

Our first generic envy-free division procedure is based on a single knife function.

Lemma 4.4.1. (Single Knife Procedure). Let C be a cake, S a family of pieces and

M ≥ 2 an integer. If there exists an S-good knife-function KC from ∅ to C with

Loss(KC, S) ≤ M,

then

PropEF(C, S, 2) ≥ 1/M.

Proof. The cake can be divided using the Generic Knife Procedure, taking C0 = ∅

and C1 = C. The assumptions of the Knife Lemma (4.3.9) hold trivially because

C0 = C \ C1 = ∅. Hence each agent playing by the rules receives an envy-free

share worth at least 1/M.

The knife function in Figure 4.3/b is Square-good and its Square-loss is 4.

Applying Lemma 4.4.1 to that knife function yields our first sub-theorem:

Theorem 4.1(a).. PropEF(Square, Squares, 2) ≥ 1/4

The generality of Lemma 4.4.1 allows us to get more results with no additional

effort. For example:

• By the knife function of Figure 4.3/b: PropEF(Square, Square pairs, 2) ≥
1/2. I.e., if each agent has to receive a union of two squares (as is common

when dividing land to settlers, e.g. one land-plot for building and another

one for agriculture, etc.), then a proportional division is possible since the
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knife function in example (b) has a geometric loss of 2 relative to the family

of square pairs.

• By Figure 4.3/c: PropEF(Quarter Plane, Generalized Squares, 2) ≥ 1/3.

All bounds presented above are tight in the strong sense stated in the introduc-

tion, i.e., it is not possible to guarantee both agents a larger utility even if envy is

allowed. This is obvious for the ≥ 1/2 results, since a proportionality of 1/n is the

best that can be guaranteed to n agents. For the other results, the matching upper

bounds are proved in Section 3.3 on page 30.

4.4.2 Cubes and archipelagos

In some cases it may be difficult to find a single knife function that covers the

entire cake. This is so, for example, when the cakes are multi-dimensional cubes

or unions of disjoint squares. To handle such cases, the following lemma suggests

a generalized division procedure employing several knife functions.

Lemma 4.4.2. (Single Partition Procedure). Let C be a cake, S a family of pieces and

M ≥ 2 an integer such that:

(a) C has a partition with a geometric loss of at most M:

m⊔

j=1

Cj = C

m

∑
j=1

Loss(Cj, S) ≤ M

(b) For every j, there are S-good knife functions from ∅ to Cj and from ∅ to Cj (where

Cj := C \ Cj).

(c) For every part Cj, the geometric loss of the knife-function on Cj is at most M:

∀j : Loss(KCj , S) ≤ M

Then:

PropEF(C, S, 2) ≥ 1/M
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Figure 4.4: (a) A cake made of a union of 3 disjoint rectangles.
(b) Three knife functions, each having a geometric loss of at most 4, proving that
PropEF(C, rectangles, 2) ≥ 1/4.

Proof. C can be divided using the following procedure.

(1) Each agent chooses the part Cj that gives him maximum utility. If the

choices are different, then by the Chooser Corollary and condition (a), each agent

receives an envy-free share worth at least 1/M, so we are done

(2) If both agents chose the same part Cj, then ask each agent to choose either

Cj or Cj (where Cj := C \ Cj). If the choices are different, then by the Chooser

Corollary and condition (a), each agent receives an envy-free share worth at least

1/M, so we are done. If the choices are identical then there are two cases:

(3-a) Both agents chose Cj. By condition (c), there exists a knife function KCj

from ∅ to Cj with a geometric loss of at most M. Apply the Generic Knife Pro-

cedure with that knife function. The requirements of the Knife Lemma (4.3.9)

are satisfied since for both agents, VS
i (∅) ≤ VS

i (C \ ∅) (trivially) and VS
i (Cj) ≥

VS
i (C \ Cj) (both agents preferred Cj to Cj). Hence, the Knife Lemma guarantees

each agent an envy-free share worth at least 1/Loss(KCj , S) ≥ 1/M.

(3-b) Both agents chose Cj. By condition (b), there exists a knife function KCj

from ∅ to Cj. There is no guarantee about the geometric loss of KCj
, but this

is fine since we will not use its geometric loss below. Apply the Generic Knife

Procedure. The requirements of the Knife Lemma (4.3.9) are met since for both

agents, VS
i (∅) ≤ VS

i (C \ ∅) (trivially) and VS
i (Cj) ≥ VS

i (C \ Cj) (both agents

preferred Cj over Cj). The Knife Lemma guarantees each agent an envy-free share

with a utility of at least VS
i (C \ Cj) = VS

i (Cj). The fact that in step (2) both agents

chose Cj implies, by the Chooser Lemma, that ∀i : VS
i (Cj) ≥ 1/M.

Several applications of Lemma 4.4.2 are presented below.

(a) PropEF(Square, Squares, 2) ≥ 1/4. Proof : A square cake can be partitioned
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to a 2-by-2 grid of squares. The loss of the partition relative to the family of

squares is 4, satisfying condition (a). Each quarter Cj has a knife-function with

a loss of 4 (see Figure 4.3/d), satisfying condition (c). For each complement Cj,

we can use e.g. a sweeping-line knife-function, as illustrated in Figure 4.3/e (see

Lemma 4.A.7 in the appendix for a proof that such functions are S-good), satisfy-

ing condition (b).

The advantage of this result over the identical result presented in the previous

subsection is that it can be easily generalized to higher dimensions:

(b) Multi-dimensional cakes: PropEF(d dimensional cube, Squares, 2) ≥ 1/2d.

Proof : C can be partitioned to 2d sub-cubes of equal side-length. For each sub-

cube Cj there is a knife function analogous to Figure 4.3/d — a cube growing

from the corner towards the center of C. Its geometric loss is 2d. For each com-

plement Cj, there is a sweeping-plane knife-function (analogous to Figure 4.3/e,

as described in Lemma 4.A.7).

(c) Archipelagos: Let C be an archipelago which is a union of m disjoint rect-

angular islands. Then PropEF(C, Rectangles, 2) ≥ 1
m+1 . Proof : The geometric

loss of the partition of C to m rectangles is obviously m < m + 1, satisfying con-

dition (a). For each part Cj, define a knife function KCj based on a line sweeping

from one side of the rectangle to the other side, similar to Figure 4.3/a. KCj(t)

is always a rectangle. Its complement can be covered by m rectangles: one rect-

angle to cover Cj \ KCj(t) and additional m− 1 rectangles to cover C \ Cj. Hence

the geometric loss of every KCj is 1 + 1 + m − 1 = m + 1, satisfying condition

(c) (see Figure 4.4). A similar sweeping-line knife-function can be used for the

complements, satisfying condition (b).

(d) Let C be an archipelago which is a union of m disjoint square islands. Then

PropEF(C, Squares, 2) ≥ 1
m+3 . The proof is the same as in (c), the only difference

being that each of the knife functions on the Cj is a union of two squares, similar

to Figure 4.3/b.

All bounds proved above are tight. The tightness of (a) is proved in Section

3.3. The tightness of (b) can be proved by an analogous d-dimensional cake,

with a water-pool in each of its 2d corners. (c) is tight in the following sense:

for every m there is a cake C, which is a union of m disjoint rectangles, having
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Prop(C, Rectangles, 2) ≤ 1
m+1 . (d) is tight in a similar sense by a similar proof.

4.4.3 Fat rectangles

More types of cakes can be handled by adding partition steps.

Lemma 4.4.3. (Multiple Partition Procedure). Let C be a cake, S a family of pieces

and M ≥ 2 an integer such that:

(a) C has a partition C1, . . . , Cm with a geometric loss of at most M:

m⊔

j=1

Cj = C

m

∑
j=1

Loss(Cj, S) ≤ M

(b) Every part Cj can be further partitioned such that, if Cj is replaced with its parti-

tion, then the geometric loss of the resulting partition of C is at most M, i.e. for every j

there exist C1
j , . . . , C

mj
j with:

mj⊔

k=1

Ck
j = Cj

∑
j′ 6=j

Loss(Cj′ , S) +
mj

∑
k=1

Loss(Ck
j , S) ≤ M

(c) For every j, k, there are S-good knife functions from ∅ to Cj and to Cj and to Ck
j

and to Ck
j .

(d) For every j, k, the geometric loss of the knife function from ∅ to Ck
j is at most M:

∀j, k : Loss(KCk
j
, S) ≤ M

Then:

PropEF(C, S, 2) ≥ 1/M

Proof. The proof uses a refinement of the procedure used to prove Lemma 4.4.2.

Steps (1) and (2) and (3-b) are exactly the same. We have to refine case (3-a), in
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Figure 4.5: A knife function with a geometric loss of 3, proving that
PropEF(C, 2 f at rectangles, 2) ≥ 1/3.

which both agents prefer Cj over Cj.

(3-a-1) Refine the partition of C by replacing Cj with its sub-partition:

(
⊔

j′ 6=j

Cj′) t (

mj⊔

k=1

Ck
j ) = C

Let each agent choose a best part from this refined partition. If the choices are

different, then by condition (b) and the Chooser Corollary, each agent receives an

envy-free share worth at least 1/M.

(3-a-2) If both agents chose the same part from the main partition, e.g. Cj′

for some j′ 6= j, then by condition (c) there exists a knife-function from ∅ to Cj

(the part chosen by both agents at step 2). Apply the Generic Knife Procedure.

The requirements of the Knife Lemma (4.3.9) are satisfied since for both agents,

VS
i (∅) ≤ VS

i (C \ ∅) (trivially) and VS
i (Cj) ≥ VS

i (C \ Cj) (both agents prefer Cj

to Cj). The Knife Lemma guarantees each agent an envy-free share with utility at

least VS
i (Cj). This Cj contains all other parts of the main partition, including Cj′ .

The fact that both agents chose Cj′ in the refined partition proves, by the Chooser

Lemma, that VS
i (Cj′) ≥ 1/M. Hence also VS

i (Cj) ≥ 1/M.

(3-a-3) If both agents chose the same part from the sub-partition, e.g. Ck
j for

some k, then ask each agent to choose either Ck
j or Ck

j (where Ck
j := C \ Ck

j ). If the

choices are different, then by condition (b) and the Chooser Corollary, each agent

receives an envy-free share worth at least 1/M. If the choices are identical then

there are two cases:

(3-a-4-a) Both agents chose Ck
j . By condition (d), there exists a knife function

KCk
j

from ∅ to Ck
j with a geometric loss of at most M. Apply the Generic Knife

Procedure with that knife function. The requirements of the Knife Lemma (4.3.9)
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are satisfied since for both agents, VS
i (∅) ≤ VS

i (C \ ∅) (trivially) and VS
i (C

k
j ) ≥

VS
i (C \ Ck

j ) (both agents preferred Ck
j over Ck

j ). Hence, the Knife Lemma guaran-

tees each agent an envy-free share worth at least 1/Loss(KCk
j
, S) ≥ 1/M.

(3-a-4-b) Both agents chose Ck
j . By condition (c), there exists an S-good knife

function from ∅ to Ck
j . Apply the Generic Knife Procedure. The requirements of

the Knife Lemma (4.3.9) are met since for both agents, VS
i (∅) ≤ VS

i (C \ ∅) (triv-

ially) and VS
i (C

k
j ) ≥ VS

i (C \ Ck
j ) (both agents preferred Ck

j over Ck
j ). The Knife

Lemma guarantees each agent an envy-free share with utility at least VS
i (C \

Ck
j ) = VS

i (C
k
j ). The fact that in step (3-a-2) both agents chose Ck

j implies, by

the Chooser Lemma, that VS
i (C

k
j ) ≥ 1/M.

Lemma 4.4.3 is used to get the second part of our Theorem 4.1:

Theorem 4.1(b). For every R ≥ 2:

PropEF(R f at rectangle, R f at rectangles, 2) ≥ 1/3

Proof. The proof relies on the following geometric fact: for every R ≥ 2, an R-fat

rectangle can be bisected to two R-fat rectangles using a straight line through the

center of its longer sides (see Figure 4.5).

Apply Lemma 4.4.3 in the following way. Let C be an R-fat rectangle. Partition

C in the middle of its longer side. The two halves are R-fat so the geometric loss

of the partition is 1 + 1 < 3, satisfying condition (a). Each half can be further

partitioned along its longer side to two rectangles, which are also R-fat (each of

these is exactly one quarter of C). When a part is replaced by its sub-partition,

the geometric loss of the resulting partition is thus 2+ 1 = 3, satisfying condition

(b). Condition (c) is satisfied e.g. by knife-functions based on sweeping lines,

as in Figure 4.3/e. For each quarter-rectangle, there is a knife function (growing

from the corner towards the center, as in Figure 4.5) with a geometric loss of 3,

satisfying condition (d).

The bound of 1/3 is tight; see Subsection 3.3.4 on page 41.

Lemma 4.4.3 can be further refined by adding more sub-partition steps. For

example, by adding a third sub-partition step we can prove that if C is an archipelago
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(a)

CB−

(b)

C1 C2

(c) (d)

Figure 4.6: Dividing a general R-fat cake to two people.
(a) The R-fat cake C and its largest contained square B− (the smallest containing
square B+ is not shown).
(b) The sub-cakes C1 and C2 (solid), the two rectangles B1 and B2 (dotted) and
their largest contained squares (dashed).
(c) The knife function on C1 in t ∈ [0, 1

2 ].
(d) The knife function on C1 in t ∈ [1

2 , 1].

of m disjoint R-fat rectangles (with R ≥ 2) then:

PropEF(C, R-fat rectangles, 2) ≥ 1
m + 2

and this bound is tight. The proof is a analogous to examples (c) and (d) after

Lemma 4.4.2.

Note that the upper bound of 1/3 is valid when the pieces are R-fat rectangles

for every finite R, while the upper bound of 1/4 for square pieces is valid for

every R < 2. This implies that 2-fat rectangles are a good practical compromise

between fatness and fairness: if we require fatter pieces (R < 2) then the pro-

portionality guarantee drops from 1/3 to 1/4, while if we allow thinner pieces

(R > 2) the proportionality remains 1/3 for all R < ∞.

4.4.4 Arbitrary fat objects

Our most general result involves cakes that are arbitrary Borel sets. The result is

proved for cakes of any dimensionality; Figure 4.6 illustrates the proof for d = 2

dimensions.
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Theorem 4.1(c). For every R ≥ 1, If C is R-fat and S is the family of 2R-fat pieces

then:

PropEF(C, S, 2) = Prop(C, S, 2) = 1/2

Proof. The proof uses Lemma 4.4.2 (the Single Partition Procedure). We show a

partition of C to two pieces and a knife-function on each piece. Scale, rotate and

translate the cake C such that the largest cube contained in C is B− = [−1, 1]d

(Figure 4.6/a). By definition of fatness (see Subsection 2.6), C is now contained in

a cube B+ of side-length at most 2R.

Using the hyperplane x = 0, bisect the cube B− to two 2-by-1 boxes B1 =

[−1, 0]× [−1, 1]d−1 and B2 = [0, 1]× [−1, 1]d−1. This hyperplane also bisects C to

two parts, C1 and C2 (Figure 4.6/b). Every Cj contains Bj which contains a cube

with a side-length of 1. Every Cj is of course still contained in B+ which is cube

with a side-length of 2R. Hence every Cj is 2R-fat. Hence the geometric loss of

the partition C = C1 t C2, relative to the family or 2R-fat objects, is 2, satisfying

condition (a) of Lemma 4.4.2.

For every j ∈ {1, 2}, define the following knife function Kj on Cj (see Figure

4.6/c,d):

• For t ∈ [0, 1
2 ], Kj(t) = (Bj)

2t, i.e., the box Bi dilated by a factor of 2t. Hence

Kj(0) = ∅ and Kj(
1
2) = Bj.

• For t ∈ [1
2 , 1], Kj(t) is any knife-function from Bj to Cj with continuous

Lebesgue-measure (see Subsection 4.A.1 for a proof that such a function

exists).

Kj(t) is always 2R-fat, since in [0, 1
2 ] it is a scaled-down version of the box Bj

(which is 2-fat) and in [1
2 , 1] it contains Bj and is contained in the cube B+. C \

Kj(t) is also 2R-fat, since it contains B3−j and is contained in B+. Moreover, the

Lebesgue measure of Kj(t) is a continuous function of t. Hence, by Subsection

4.A.1, Kj is an S-good knife function, satisfying condition (b) of Lemma 4.4.2.

Since both Kj and Kj are 2R-fat, the geometric loss of Kj relative to the family

of 2R-fat shapes is 1 + 1 = 2, satisfying condition (c) of Lemma 4.4.2.
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All conditions of Lemma 4.4.2 are satisfied, and its conclusion is exactly the

claimed theorem.

Theorem 4.1(c) implies that we can satisfy the two main fairness requirements:

proportionality and envy-freeness, while keeping the allocated pieces sufficiently

fat. The fatness guarantee means that each allotted piece: (a) contains a suffi-

ciently large square, (b) is contained in a sufficiently small square. In the context

of land division, these guarantees can be interpreted as follows: (a) Each land-plot

has sufficient room for building a large house in a convenient shape (square); (b)

The parts of the land that are valuable to the agent are close together, since they

are bounded in a sufficiently small square.

Finally we note that a different technique leads to a version of Theorem 4.1(c)

which guarantee that the pieces are not only 2R-fat but also convex (if the original

cake is convex); hence an agent can walk in a straight line from his square house

to his valuable spots without having to enter or circumvent the neighbor’s fields.

See Appendix 4.B for details.

4.4.5 Between envy-freeness end proportionality

For all cakes C and families of usable pieces S studied in this section, we proved

that there exists a positive constant p such that PropEF(C, S, 2) ≥ p. Moreover, for

the cases in which p < 1/2, we proved in Section 3.3 that Prop(C, S, 2) ≤ p (for

the cases in which p = 1/2 the latter inequality is obvious). Since PropEF(C, S, 2) ≤
PropEF(C, S, 2) always, we get that for all settings studied here:

PropEF(C, S, 2) = Prop(C, S, 2)

In other words, in these cases, envy-freeness is compatible with the best possible

partial-proportionality.

It is an open question whether this equality holds for every combination of

cakes C and families S.

What can we say about the relation between proportionality and envy-freeness

for arbitrary C and S? In addition to the trivial upper bound PropEF(C, S, 2) ≤
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Prop(C, S, 2), we have the following lower bound:

Lemma 4.4.4. For every cake C and family S:

PropEF(C, S, 2) ≥ Prop(C, S, 2) · inf
s∈S

PropEF(s, S, 2)

Proof. Let p = Prop(C, S, 2) and e = infs∈S PropEF(s, S, 2). The following meta-

procedure yields an envy-free partition of C in which the utility of each agent is

at least p · e.

By the definition of Prop(C, S, 2), there exists an S-allocation X = (X1, X2)

with a proportionality of at least p, i.e, each agent i receives an S-piece Xi with

Vi(Xi) ≥ p.

Ask each agent whether he envies the other agent and proceed accordingly:

(a) If no agent envies the other agent, then the partition is already envy-free.

The utility of each agent is at least p, which is at least p · e (since e ≤ 1).

(b) If both agents envy each other, then let them switch the pieces. The result-

ing partition is envy-free and the utility of each agent is more than p ≥ p · e.

(c) The remaining case is that only one agent envies the other agent. W.l.o.g,

assume it is agent 1 who envies agent 2. This means that the S-piece X2 has

a utility of at least p to both agents. By the assumptions of the lemma, since

X2 ∈ S, PropEF(X2, S, 2) ≥ e. Therefore, there exists an envy-free S-allocation of

X2 in which the utility of each agent i is at least e ·Vi(X2) ≥ e · p.

So by previous results we have the following partial-compatibility results for

every cake C:

• Prop(C, Squares, 2) ≥ PropEF(C, Squares, 2) ≥ 1
4Prop(C, Squares, 2)

• Prop(C, R f at rects, 2) ≥ PropEF(C, R f at rects, 2) ≥ 1
3Prop(C, R f at rects, 2)

(for R ≥ 2)

• Prop(C, Rectangles, 2) ≥ PropEF(C, Rectangles, 2) ≥ 1
2Prop(C, Rectangles, 2)
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(a)

A
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CC
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A:1 C:3 B:1 A:3

B:1

C:2

A:1A:1

B:2

C:3

A:2

*

(c)

Figure 4.7: An illustration of the Simmons-Su procedure for n = 3 agents, A B
and C.
(a) A triangulation of the simplex of partitions in which each vertex is assigned
to an agent.
(b) Each vertex is labeled with the index of the piece preferred by its assigned
agent. The fully-labeled triangle is starred.
(c) The process is repeated with a finer triangulation of the original simplex.

4.5 Envy-Free Division For n agents

4.5.1 The one-dimensional procedure

Existence of envy-free allocations in one dimension was first proved by Stromquist

(1980). A procedure for finding such allocations was developed by Simmons and

first described by Su (1999). Our procedure for n agents is a generalization of that

procedure. We briefly describe the 1-dimensional procedure below.

The cake is the 1-dimensional interval [0, 1] and S is the family of intervals. A

partition of the cake to n intervals can be described by a vector of length n whose

elements are the lengths of the intervals. The sum of all lengths in a partition is 1,

so the set of all partitions is an (n− 1)-dimensional simplex in Rn. The procedure

proceeds as follows (see Figure 4.7):

(a) Preparation. Triangulate the simplex of partitions to a collection of (n− 1)-

dimensional sub-simplexes. Assign each vertex of the triangulation to one of the

n agents, such that in each sub-simplex, all n agents are represented. Su shows

that there always exists such a triangulation.

(b) Evaluation. Recall that each vertex of the triangulation corresponds to a

partition of the cake to n intervals. For each vertex, ask its assigned agent: “if the

cake is partitioned according to this vertex, which piece would you prefer?”. The

answer is an integer between 1 and n; label that vertex with that integer.
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The labeling created in step (b) has a special structure. First, each of the n

main vertexes of the large simplex corresponds to a partition in which a single

piece i ∈ {1, . . . , n} encompasses the entire cake and all other pieces are empty.

Any agent prefers the entire cake over an empty piece, so this vertex will surely

be labeled by i (see Figure 4.7/b, where the three vertexes of the large triangle

are labeled by 1, 2 and 3). Moreover, each point on the segment between vertex

i1 and vertex i2 corresponds to a partition in which the cake is divided between

pieces i1 and i2, and all other pieces are empty. Therefore, each such point will

be labeled by either i1 or i2. The same is true in any number of dimensions: in

each face of the simplex, all interior points are labeled by one of the labels of the

main vertexes that span that face. A labeling that has such a structure is called a

Sperner labeling. By Sperner’s lemma, any triangulation with a Sperner labeling

has a fully-labeled sub-simplex, in which all vertexes are labeled differently.

(c) Refinement. Steps (a) and (b) can be repeated again and again, each time

with a finer triangulation. This yields an infinite sequence of fully-labeled sim-

plexes. By compactness of the simplex, there is a subsequence that converges to

a single point. By the continuity of the agents’ valuations, this point corresponds

to a partition in which each of the n agents prefers a different piece. By definition,

this partition is envy-free.

Note that the above procedure is infinite — the envy-free partition is found

only at the limit of an infinite sequence. In fact, Stromquist (2008) proved that

when n ≥ 3, an envy-free partition to n agents with connected pieces cannot be

found by a finite procedure. Therefore, Simmons’ infinite procedure is the best

that can be hoped for. Deng and Qi and Saberi (Deng et al., 2012) show that an

approximately-envy-free division can be found in bounded time. For example,

suppose that an interval is divided among several agents and they all agree that

a 1 centimeter movement of the border between their plots is irrelevant. Then

the simplex of partitions can be divided to sub-simplices of side-length 1 cm.

If the total length of the cake is L centimeters, then a fully-labeled simplex can

be found using O(Ln−2) queries (Deng et al., 2012, Theorem 5). All points in

that simplex correspond to a division that is approximately-envy-free up to the

agents’ tolerance.
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4.5.2 Knife tuples

Both Stromquist’s existence proof and the Simmons–Su and the Deng–Qi–Saberi

algorithms do not work directly on the cake — they work on the unit simplex,

each point of which represents a cake-partition. Therefore, we can extend these

algorithms to two dimensions if we find an appropriate way to map each point

of the unit simplex to a two-dimensional cake-partition.

Our main tool is a knife-tuple — an extension of the knife-function defined in

Definition 4.3.5.

Definition 4.5.1. Given a cake C, an n-knife-tuple on C is a vector of n functions

(K1, . . . , Kn), which is a function from ∆n (the (n− 1)-dimensional unit-simplex

in Rn) to the partitions of C, such that for every nonempty subset of indexes

I ⊆ {1, . . . , n}, if:

∑
i∈I

ti = 1 and ∀i /∈ I : ti = 0,

then the pieces whose indexes are in I form a partition of the cake and the other

pieces are empty:

⊔

i∈I

Ki(t1, . . . , tn) = C and ∀i /∈ I : Ki(t1, . . . , tn) = ∅.

In particular, at endpoint #i of the simplex, piece #i comprises the entire cake. I.e,

if ti = 1 and ti′ 6=i = 0, then Ki = C and Ki 6=i = ∅.

Knife-tuples can be constructed from knife-functions.

Lemma 4.5.2. Let C be a cake and K a knife-function from ∅ to C. Define functions

K1, K2:

K1(t1, t2) := K(t1)

K2(t1, t2) := C \ K(1− t2)

Then, (K1, K2) is a 2-knife-tuple on C.

Proof. We verify the knife-tuple property for all nonempty subset of indexes I ⊆
{1, 2}:
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• I = {1, 2}: since we are on the unit simplex, t1 + t2 = 1, K1 = K(t1) and

K2 = C \ K(t1) so indeed K1 t K2 = C.

• I = {1}: When t1 = 1 and t2 = 0, K1 = K(1) = C and K2 = C \ K(1) = ∅.

• I = {2}: When t2 = 1 and t1 = 0, K1 = K(0) = ∅ and K2 = C \ K(0) = C.

Longer knife-tuples can be constructed recursively, by replacing an element

of an existing knife-tuple with two elements separated by a knife-function. We

exemplify this construction with a 3-knife-tuple.

Lemma 4.5.3. Let C be a cake and (K1, K2) a 2-knife-tuple on C. Suppose that, for

every t1 and every t2 > 0, we have a knife-function Kt1,t2 from ∅ to K2(t1, t2). Then,

replacing the function K2 with two complementary functions K′2 and K′3 gives a 3-knife-

tuple (K′1, K′2, K′3):

K′1(t1, t2, t3) := K1(t1, t2 + t3)

K′2(t1, t2, t3) := Kt1,t2+t3

(
t2

t2 + t3

)
[t2 + t3 > 0]

∅ [t2 + t3 = 0]

K′3(t1, t2, t3) := K2(t1, t2 + t3) \ Kt1,t2+t3

(
t2

t2 + t3

)
[t2 + t3 > 0]

∅ [t2 + t3 = 0]

Proof. We verify that (K′1, K′2, K′3) satisfies the knife-tuple property for all nonempty

subsets of indexes. Recall that the knife-tuple property of the original (K1, K2)

implies that: K1(1, 0) = K2(0, 1) = C and K1(0, 1) = K2(1, 0) = ∅ and K1(t1, 1−
t1) t K2(t1, 1− t1) = C.

• When t1 = 1 and t2 = t3 = 0, K′1 = K1(1, 0) = C and K′2 = K′3 = ∅ by

definition.

• When t2 = 1 and t1 = t3 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1(1) =

K2(0, 1) = C and K′3 = K2(0, 1) \ K0,1(1) = ∅.

134



• When t3 = 1 and t1 = t2 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1(0) = ∅ and

K′3 = K2(0, 1) \ K0,1(0) = K2(0, 1) = C.

• When t1 + t2 = 1 and t3 = 0, K′1 = K1(t1, t2) and K′2 = Kt1,t2(1) = K2(t1, t2)

so K′1 t K′2 = K1 t K2 = C, and K′3 = 0.

• When t1 + t3 = 1 and t2 = 0, K′1 = K1(t1, t3) and K′3 = K2(t1, t3) \Kt1,t3(0) =

K2(t1, t3) so K′1 t K′3 = K1 t K3 = C, and K′2 = 0.

• When t2 + t3 = 1 and t1 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1( t2
t2+t3

) and

K′3 = K2(0, 1) \ K0,1( t2
t2+t3

), so K′2 t K′3 = K2(0, 1) = C.

• When t1 + t2 + t3 = 1, K′2tK′3 = K2(t1, t2 + t3), so K′1tK′2tK′3 = K1(t1, t2 +

t3) t K2(t1, t2 + t3) = C.

So to build a 3-knife-tuple, we start with a single knife-function on C that cuts

it to K1 t K2. Then, for every point in time, we use another knife-function on K2

that cuts it to K′2 t K′3. Alternatively, we can use a knife-function on K1 that cuts

it to K′1 t K′3; the proof is entirely analogous.

An example of a 3-knife-tuple is shown in Figure 4.8. There, the first knife-

function (K1 ≡ K′1) is a growing pair-of-squares, identical to the knife-function in

Figure 4.3/b. K2 is its complement (which is also a pair-of-squares). For every

point in time, the second knife-function (K′2) is a growing union-of-four-squares.

It starts at an empty set and grows until it covers all of K2. K′3 is the remainder,

which is also a union of four squares.

The previous lemma can be generalized to create knife-tuples of arbitrary

length.

Lemma 4.5.4. Let C be a cake and (K1, . . . , Kn) an n-knife-tuple on C. Suppose that

for some i ∈ {1, . . . , n}, for every t1, . . . , tn where ti > 0, we have a knife-function

Kt1,...,ti,...,tn from ∅ to Ki(t1, . . . , ti, . . . , tn). Then, replacing the index i with two indexes

i1 and i2 and replacing the function Ki with two complementary functions K′i1 and K′i2
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gives an (n + 1)-knife-tuple (K′1, . . . , K′i1, K′i2, . . . , K′n):

K′i1(t1, . . . , ti1, ti2, . . . , tn) :=Kt1,...,ti1+ti2,...,tn

(
ti1

ti1 + ti2

)
[ti1 + ti2 > 0]

:=∅ [ti1 + ti2 = 0]

K′i2(t1, . . . , ti1, ti2, . . . , tn) :=Ki(t1, . . . , ti1 + ti2, . . . , tn)

\ Kt1,...,ti1+ti2,...,tn

(
ti1

ti1 + ti2

)
[ti1 + ti2 > 0]

:=∅ [ti1 + ti2 = 0]

∀j 6= i :K′j(t1, . . . , , ti1, ti2, . . . , tn) :=Kj(t1, . . . , ti1 + ti2, . . . , tn)

Proof. We verify that (K′1, . . . , K′i1, K′i2, . . . , K′n) satisfies the knife-tuple property

for every nonempty subset of indexes, I′. There are four cases, depending on

whether I′ contains i1 or i2 or both.

• i1 /∈ I′ and i2 /∈ I′. Then, tj∈I′K′j = tj∈I′Kj = C by the knife-tuple property

of (K1, . . . , Kn), and K′i1 = K′i2 = ∅ by definition.

• i1 ∈ I′ and i2 /∈ I′. When ti2 = 0, ti1 + ti2 = ti1, so K′i1 = Kt1,...,ti1,...,tn(1) =

Ki(t1, . . . , ti1, . . . , tn). Define an alternative subset of indexes: I := I′ \ {i1}∪
{i}. Then, tj∈I′K′j = tj∈IKj = C by the knife-tuple property of (K1, . . . , Kn),

and K′i2 = ∅ by definition.

• i2 ∈ I′ and i1 /∈ I′. When ti1 = 0, ti1 + ti2 = ti2, so K′i2 = Ki(t1, . . . , ti2, . . . , tn) \
Kt1,...,ti2,...,tn(0) = Ki(t1, . . . , ti2, . . . , tn). Define an alternative subset of in-

dexes: I := I′ \ {i2} ∪ {i}. Then, tj∈I′K′j = tj∈IKj = C by the knife-tuple

property of (K1, . . . , Kn), and K′i1 = ∅ by definition.

• i2 ∈ I′ and i1 ∈ I′. Note that when ti := ti1 + ti2, K′i1 t K′i2 = Ki. Define a

subset of indexes I := I′ \ {i1, i2} ∪ {i}. Then, tj∈I′K′j = tj∈IKj = C by the

knife-tuple property of (K1, . . . , Kn).

Definition 4.3.6 on page 116 and Definition 4.3.8 on page 118 can be naturally

generalized from a knife-function to a knife-tuple:
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Definition 4.5.5. The geometric-loss of a knife-tuple (K1, . . . , Kn) is the supremum

geometric loss of the resulting partitions:

Loss((K1, . . . , Kn), S) := sup
(t1,...,tn)∈∆n

( n

∑
j=1

Loss(Kj(t1, . . . , tn), S)
)

In Figure 4.8, K′1 can be covered by two squares and K′2 and K′3 can be covered

by four squares each, so the square-geometric-loss of this 3-knife-tuple is 10.

Definition 4.5.6. A knife-tuple (K1, . . . , Kn) is called S-good if for every i ∈ {1, . . . , n}
and every absolutely-continuous value-measure V, the function VS(Ki(t1, . . . , tn))

is a continuous function of t1, . . . , tn.

In the knife-tuple of Figure 4.8, the squares meet only at their corners, no

square is created or destroyed abruptly, so the knife-tuple is square-good. This

can be proved formally as in Appendix 4.A.2; the details are omitted for the sake

of brevity.

Now we can generalize Lemma 4.4.1 from 2 to n agents:

Lemma 4.5.7. Let C be a cake and S a family of pieces. If there is an S-good n-knife-tuple

on C with a geometric loss of at most M, then:

PropEF(C, S, n) ≥ 1/M

Proof. Use the Simmons–Su procedure described in Subsection 4.5.1. The Prepa-

ration step (a) is exactly the same. In the Evaluation step (b), for each vertex

(t1, . . . , tn) of the triangulation, use the n-knife-tuple to create the partition: K1(t1, . . . , tn), . . . , Kn(t1, . . . , tn).

Ask the owner of that vertex (e.g. agent i) to indicate its favorite piece in this par-

tition, namely:

arg max
j∈{1,...,n}

VS
i (Kj(t1, . . . , tn))

and label that vertex with the agent’s reply. By the properties of a knife-tuple,

whenever tj = 0, Kj = ∅, so VS
i (Kj) = 0, so the agent will never reply j. There-

fore, the resulting labeling is a Sperner labeling, so a fully-labeled sub-simplex

exists.
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t1 = 0.3, t2 = 0.1, t3 = 0.6

b

t1 = 0.3, t2 = 0.6, t3 = 0.1

b

t1 = 0.6, t2 = 0.1, t3 = 0.3

b

t1 = 0.6, t2 = 0.3, t3 = 0.1

b

Figure 4.8: Four partitions induced by the 3-knife-tuple (K′1, K′2, K′3) in different
points (t1, t2, t3) of the unit-simplex. K′1(·) is filled with horizontal blue lines,
K′2(·) is filled with vertical green lines and K′3(·) is blank.

By repeating steps (a) and (b) infinitely many times with finer and finer tri-

angulations, we get a subsequence of fully-labeled triangles that converges to a

single point. Because the knife-tuple is S-good, all agents’ S-value functions are

continuous, so the limit point corresponds to an envy-free partition. The loss of

the knife-tuple is at most M, so the proportionality of the limit partition is at least

1/M. 5

We now apply Lemma 4.5.7 to prove our Theorem 4.2.

4.5.3 Squares and fat rectangles

Theorem 4.2(a). For every n ≥ 1:

PropEF(Square, Squares, n) ≥ 1
22dlog2ne >

1
4n2

Proof. For every n which is a power of 2, we construct an n-knife-tuple (K1, . . . , Kn),

in which for every (t1, . . . , tn) ∈ ∆n, and for every j ∈ {1, . . . , n} for which tj > 0,

Kj(t1, . . . , tn) is a union of at most n squares. Hence, the partition induced by

(K1, . . . , Kn) has a geometric loss of n · n = n2.

The construction is recursive. The base is n = 2. Take the knife-function in

Figure 4.3/b (a union of two corner-squares growing towards the center). By

Lemma 4.5.2, it defines a 2-knife-tuple which we denote by: (K1, K2). For each t1

and t2, K1(t1, t2) and K2(t1, t2) are square-pairs (unions of two squares).

Consider next the case n = 4. In every square-pair in the above 2-knife-

5When n = 3, the three-knives procedure of Stromquist (1980) can be used instead of Simmons’
procedure. See the conference version (Segal-Halevi et al., 2015a).
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tuple, define a knife-function as shown in Figure 4.8 — a union of four corner-

squares growing from opposite corners towards the center. By Lemma 4.5.4, we

can replace K1 by K′1, K′2 and K2 by K′3, K′4. For each i ∈ {1, 2, 3, 4}, t1, t2, t3, t4,

Ki(t1, t2, t3, t4) is a union of four squares.

After l steps, we have a 2l-knife-tuple in which each component is a union of

2l squares. We split each component using a knife-function made of a union of

2l+1 squares growing from opposite corners. This gives a new, 2l+1-knife-tuple in

which each component is a union of 2l+1 squares. After log2 n steps, we get the

desired n-knife-tuple.

This knife-tuple is square-good since no squares are created or destroyed abruptly;

this is apparent in the illustration, since the squares from opposite sides meet only

at their corners. We suppress a formal proof of this geometric fact.

When n is not a power of two, it can be rounded to the next power of two

— 2dlog2ne. The geometric loss is then at most 22dlog2ne, which is always less than

4n2.

For completeness we prove the following very simple theorem:

Theorem 4.2(b). If C is an R-fat rectangle and S the family of R-fat rectangles

then:

PropEF(C, S, n) ≥ 1
22dlog2ne >

1
4n2

Proof. Scale the coordinate system such that C becomes a square. Use Theorem

4.2(a) and get a division with square pieces. Scale the coordinate system back.

Now the pieces are R-fat rectangles.

We do not know if the 1/(4n2) lower bound is asymptotically tight. The up-

per bound from Claim 3.3.4 on page 33 is Prop(Square, squares, n) ≤ 1/(2n).

Moreover, the procedure of Subsection 3.5.1 on page 50 proves that Prop(Square,

squares, n) ≥ 1/(4n− 4), but ignores envy considerations. We do not know if it

is possible to attain an envy-free division with a proportionality of 1/O(n).

In the following subsection we show that it is possible to attain an envy-free
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and proportional division for every n, in return to a compromise on the family of

usable pieces.

4.5.4 Arbitrary fat objects

Theorem 4.2(c). Let C be a d-dimensional R-fat cake and n ≥ 2 an integer. Let S

be the family of mR-fat pieces, where m be the smallest integer such that n ≤ md

(i.e. m = dn1/de). Then:

PropEF(C, S, n) = 1/n

Proof. The proof is illustrated in Figure 4.9 for the case of d = 2 dimensions. Let

C be an R-fat d-dimensional cake. By definition of fatness it contains a cube B−

of side-length x and it is contained in a parallel cube B+ of side-length R · x, for

some x > 0.

Partition the cube B− to a grid of md sub-cubes, B1, ..., Bmd , each of side-length
x
m . For every i, denote by B−i the union of all md − 1 squares different than Bi, i.e:

B−i :=
⋃

j 6=i

Bj = B− \ Bi

Denote by B− the cake outside the enclosed cube, i.e:

B− := C \ B−

Define the following knife function K on C (see Figure 4.9):

• For t ∈ [0, 1
3 ]: K(t) = (B1)

3t, i.e., the cube B1 dilated by a factor of 3t. Hence

K(0) = ∅ and K(1
3) = B1.

• For t ∈ [1
3 , 2

3 ]: K(t) is any knife function from B1 to C \ B−1 with continuous

Lebesgue measure. See Subsection 4.A.1 for a proof that such a function

exists.

• For t ∈ [2
3 , 1]: K(t) is C \ [(B−1)

3(1−t)], i.e., the cake not yet covered by the

knife is B−1 dilated by a factor proportional to the remaining time. Hence

K(1) = C.
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t1 ∈ (0, 1
3) t1 = 1

3 t1 ∈ (1
3 , 2

3) t1 = 2
3 t1 ∈ (2

3 , 1)

t2 = 0

t2 ∈ (0, 1
3)

t2 = 1
3

t2 ∈ (1
3 , 2

3)

t2 = 2
3

t2 ∈ (2
3 , 1)

Figure 4.9: Dividing a general R-fat cake to n = 3 people. K1 is filled with
horizontal lines, K2 is filled with vertical lines and K3 is white. Note that each of
these three pieces is 2R-fat, where R is the fatness of the original cake.
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By Lemma 4.5.2, K induces a 2-knife-tuple (K1, K2) where K1 := K and K2 :=

C \ K1. For every t1, t2 with t1 + t2 = 1, K1(t1, t2) is mR-fat:

• When t1 ∈ [0, 1
3 ], K1 it is a cube, which is 1-fat.

• When t1 ∈ [1
3 , 1], K1 contains the cube B1, whose side-length is x/m, and is

contained in the cube B+, whose side-length is x · R.

and K2(t1, t2) is also mR-fat:

• When t1 ∈ [0, 2
3 ], K2 contains e.g. the cube Bn, whose side-length is x/m,

and is contained in the larger cube B+, whose side-length is x · R.

• When t1 ∈ [2
3 , 1], K2 contains a dilated Bn and it is contained in a dilated B−;

since they are dilated by the same factor, the ratio between their side-lengths

is always m.

For every t1, t2 with t1 + t2 = 1, we now define a knife-function Kt1,t2 from ∅

to K2(t1, t2). Kt1,t2 is analogous to K but uses the sub-cube B2. This is possible

because:

• When t1 ∈ [0, 2
3 ], K2 contains the cube B2 itself;

• When t1 ∈ (2
3 , 1], K2 contains a dilated B2, which is contained in a dilated

B+.

The function Kt1,t2 is defined as follows:

• For t ∈ [0, 1
3 ]: Kt1,t2(t) = (B2)

3t.

• For t ∈ [1
3 , 2

3 ]: Kt1,t2(t) is any knife-function from B2 to K2 \ B−2 with contin-

uous Lebesgue measure.

• For t ∈ [2
3 , 1]: Kt1,t2(t) is K2 \ [(B−2)

3(1−t)].

By Lemma 4.5.3, this induces a 3-knife-tuple (K′1, K′2, K′3).

To define an n-knife-tuple, proceed in a similar way for the pieces B1, . . . , Bn.

All components in the knife-tuple are mR-fat, and their Lebesgue measure changes

continuously. Therefore, by the proofs in Subsection 4.A.1, the knife-tuple is S-

good, as required by Lemma 4.5.7.
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Length = 1

Length = R

V = n− 1 + ǫ V = 1− ǫ

Figure 4.10: A fat cake in which every proportional division must use slim pieces.
See Lemma 4.5.8.

Figure 4.9 shows an example of the construction for d = 2 dimensions and

n = 3 agents. Here m = d
√

3e = 2 so each agent receives an envy-free 2R-fat

land-plot with a utility of at least 1/3.

Theorem 4.2(c) implies that we can guarantee proportionality by compromis-

ing on the fatness of the pieces — allowing the pieces to be thinner than the cake

by a factor of dn1/de. This factor is asymptotically optimal even when envy is

allowed:

Lemma 4.5.8. For every R ≥ 1, there is an (R + 1)-fat cake C for which, for every

m′ ≤ (n− 1)1/d:

PropEF(C, m′R f at objects, n) ≤ Prop(C, m′R f at objects, n) < 1/n

Proof. Let δ, ε be small positive constants. Let C be a cake with the following two

components:

• The left component is a cube with all sides of length 1;

• The right component is a box with one side of length R and the other sides

of length δ.

See Figure 4.10 for an illustration for d = 2. C is contained in a cube of side-length

R + 1 and it contains a cube of side-length 1, so it is (R + 1)-fat.

C represents a desert with the following water sources:
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• The left cube contains n− 1 + ε water units;

• A small disc at the end of the right box contains 1− ε water units.

C has to be divided among n agents whose value functions are proportional to the

amount of water. To get a proportional division, each agent must receive exactly

1 unit of water. This means that at least one piece, e.g. Xi, must overlap both the

right pool and the left pool.

The smallest cube containing Xi has a side-length of at least R. For the largest

cube contained in Xi, there are two options:

• If the largest contained cube is in the left side, then its side-length must be

at most
(

1
n−1+ε

)1/d

, since it must contain at most 1 unit of water.

• If the largest contained cube is in the right side, then its side-length must be

at most δ.

If δ is sufficiently small (in particular, δ <

(
1

n−1

)1/d

), then the piece Xi is not

m′R-fat for every m′ ≤ (n− 1)1/d. This means that, if all pieces must be m′R-fat,

a proportional division is impossible.

4.6 Conclusions and Future Work

This chapter presented the problem of dividing a cake to agents whose util-

ity functions depend on geometric shape, where the division should be both

partially-proportional and envy-free. The main contributions in this chapter are

several generic division procedures for envy-free division. For two agents, these

procedures have the best possible partial-proportionality guarantees in various

geometric scenarios. For n agents, the procedures guarantee a positive partial

proportionality.

The tools developed in this chapter are generic and can work for cakes and

pieces of other geometric shapes. In fact, our tools reduce the envy-free divi-

sion problem to a geometric problem — the problem of finding appropriate knife

functions.

Some topics not covered in the present chapter are:
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• Utility functions that takes into account both the value contained in the best

usable piece and the total value of the piece, e.g.: U(X) = w ·VS(X) + (1−
w) ·V(X), where w is some constant.

• Absolute size constraints on the usable pieces instead of the relative fatness

constraints studied here, e.g. let S be the family of all rectangles with length

and width of at least 10 meters.

• Personal geometric preferences — letting each agent i specify a different

family Si of usable pieces.
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Chapter 4 Appendix

4.A Geometric conditions for S-good knife functions

Recall Definition 4.3.6:

Given a cake C and a family S, a knife function KC is called S-good

if for every absolutely-continuous value-measure V, both VS(KC(t))

and VS(KC(t)) are continuous functions of t.

This section presents two different geometric properties of a knife function KC,

each of which guarantees that it is S-good.

4.A.1 S-smoothness

The first property is simple: both the region covered and the region not covered

by the knife function should always return S-pieces whose Lebesgue measure

changes continuously.

Definition 4.A.1. Let S be a family of pieces. A knife function K(t) is called S-

smooth if:

(a) The Lebesgue measure of K(t) (and hence of K(t)) is a continuous function

of t, and:

(b) for all t, both K(t) ∈ S and K(t) ∈ S.

Lemma 4.A.2. If V is a measure absolutely-continuous with respect to Lebesgue mea-

sure, and K is an S-smooth knife-function, then the real functions VS ◦ K and VS ◦ K are

continuous.

Proof. The measure V is absolutely continuous with respect to Lebesgue measure,

and Lebesgue(K(t)) is a continuous function of t by condition (a). Hence, V(K(t))

is also a continuous function of t. Condition (b), namely K(t) ∈ S, implies that

∀t ∈ [0, 1] : VS(K(t)) = V(K(t)), so VS(K(t)) is also a continuous function of t.

An analogous proof applies to VS(K(t)).
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The knife function in Figure 4.3/a is Rectangle-smooth but not Square-smooth.

The other knife functions in that figure are neither Rectangle-smooth nor Square-

smooth (e.g in Figure 4.3/c, K(t) is not a rectangle).

We now prove a useful lemma that will help us find S-smooth functions. Re-

call that S-smoothness has two conditions: Lebesgue(K(t)) should be continuous,

and K(t) should be in S. We now focus on the first condition — continuity of

Lebesgue(K(t)).

Given two bounded Borel subsets of Rd, A and B, does there always exist

a knife function K from A to B such that Lebesgue(K(t)) is continuous? By the

monotonicity of a knife-function, a necessary condition is that A ⊂ B. By the

following lemma, this condition is also sufficient.

Lemma 4.A.3. Let A and B be two bounded Borel subsets of Rd with A ⊆ B. There

exists a knife function K from A to B, such that Lebesgue(K(t)) is a continuous function

of t.

Proof (based on Fish (2014)). Pick a point O ∈ B. For every r ≥ 0 let D(r) be the

open d-ball of radius r around O. Since B is bounded, there is a certain radius

rmax such that B ⊆ D(rmax). For every t ∈ [0, 1], define D∗(t) = D(t · rmax), so

D∗(t) is an open ball whose radius grows continuously from 0 to rmax. Define:

K(t) := [A ∪ D∗(t)] ∩ B. Clearly, K(0) = A, K(1) = B and K is (weakly) mono-

tonically increasing. Hence, K is a knife-function from A to B. The continuity

of Lebesgue(K(t)) follows from the fact that Lebesgue(D∗(t)) is continuous and

for every ∆t: Lebesgue(K(t + ∆t))− Lebesgue(K(∆t)) ≤ Lebesgue(D∗(t + ∆t))−
Lebesgue(D∗(∆t)).

We call any function satisfying the requirements of Lemma 4.A.3 a knife-function

with continuous Lebesgue-measure. Any S-smooth knife-function has continuous

Lebesgue-measure. Any knife-function with continuous Lebesgue-measure in

which K(t) ∈ S and K(t) ∈ S is S-smooth.

4.A.2 S-continuity

The second property is more involved. The knife function may return pieces that

are not from S. However, it must change in a way that S-pieces are not created or
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destroyed abruptly, but rather grow or shrink in a continuous manner.

Definition 4.A.4. A piece s is called a ε-predecessor of a piece s′ if s ⊆ s′ and

Lebesgue(s′ \ s) < ε.

Definition 4.A.5. Let S be a family of pieces. A knife function K(t) is called S-

continuous if for every ε > 0 there exists δ > 0 such that, for all t and t′ having

|t′ − t| < δ:

(a) Every S-piece st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t).

(b) Every S-piece st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t).

Lemma 4.A.6. If V is a measure absolutely-continuous with respect to Lebesgue mea-

sure, and K is an S-continuous knife function, then the real functions VS ◦ K and VS ◦K

are uniformly-continuous.

Proof. Given ε′ > 0, we show the existence of δ > 0 such that, for every t, t′, if

|t′ − t| < δ then |VS(K(t′))−VS(K(t))| < ε′.

Given ε′, by the continuity of V, there is an ε > 0 such that:

Lebesgue(s) < ε =⇒ V(s) < ε′ (4.2)

Given that ε, by the S-continuity of K there is a δ > 0 such that, if |t′ − t| < δ,

then every S-piece st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t). This means

that st ⊆ st′ and:

Lebesgue(st′ \ st) < ε

which by (4.2) implies

V(st′ \ st) < ε′

which by additivity of V implies

V(st) > V(st′)− ε′

The latter inequality is true for every S-piece st′ ⊆ K(t′), so it is also true for the
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supremum:

sup
st∈S,st⊆K(t)

V(st) ≥ V(st) > sup
st′∈S,st′⊆K(t′)

V(st′)− ε′

By definition, the S-value is the supremum, so:

VS(K(t)) > VS(K(t′))− ε′

By symmetric arguments (replacing the roles of t and t′), VS(K(t′)) > VS(K(t))−
ε′. Hence |VS(K(t′))−VS(K(t))| < ε′ as we wanted to prove.

An analogous proof applies to the function VS ◦ K.

The following lemma demonstrates how the existence of S-continuous func-

tions can be proved.

Lemma 4.A.7. Let S be the family of d-dimensional cubes. For every bounded cake C in

Rd, there exists an S-continuous knife-function from ∅ to C.

Proof. Since C is bounded, it can be moved and scaled such that it is contained in

the unit cube [0, 1]d. For every t ∈ [0, 1], Let H(t) be the half-space defined by:

x < t. Define: KC(t) := H(t) ∩ C. Clearly, KC(0) = ∅, KC(1) = C and KC is

(weakly) monotonically increasing. Hence, KC is a knife-function from ∅ to C.

The proof that KC is S-continuous is based on the following geometric fact:

for every cube st′ contained in the half-space H(t + δ), there exists a cube st ⊆ st′

contained in the half-space H(t), such that the side-length of st is smaller than that

of st′ by at most δ (it is smaller by exactly δ when st′ is adjacent to the rightmost

side of H(t + δ) and parallel to the axes; see Figure 4.11 for an illustration of the

two-dimensional case). Suppose st′ is also contained in C. Since C is contained in

the unit cube, the side-length of st′ is at most 1. Therefore, the area of st is smaller

than that of st′ by at most 1− (1− δ)d ≤ d · δ.

Consider now the definition of S-continuity. For every ε > 0, take δ := ε/d,

let t′ = t + δ and let st′ be an S-piece contained in KC(t′). By definition of KC, st′

is contained in both C and H(t′). By the geometric fact, st′ has an ε-predecessor

st that is contained in H(t). Since st ⊆ st′ , it is also contained in C. Hence, it is

contained in KC(t).
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t t + δ

Figure 4.11: Square-continuity of the knife-function defined in Lemma 4.A.7.
The solid line describes the knife location at time t; the dotted line describes its
location at time t + δ.
The dotted squares are squares contained in H(t + δ); the solid squares are their
predecessors in H(t).
At the bottom, the side-length of the solid square is smaller than the dotted square
by exactly δ.
At the top, the side-length of the solid square is smaller than the dotted square
by less than δ.

(c),(d) K3(t)

Figure 4.12: A knife-function that is not S-continuous.

Using similar arguments, it is possible to prove that the function KC described

above is S-continuous also when S is the family of boxes or fat boxes. Full char-

acterization of the the families S for which KC is S-continuous is an interesting

question that is beyond the scope of the present paper.

4.A.3 Examples

The knife-function in Figure 4.3/a, KC(t) = [0, L]× [0, t], is a special case of the

’sweeping plane’ function of Lemma 4.A.7. Hence it is square-continuous (and

also rectangle-continuous).

As a negative example, consider the knife function KC(t) = [0, t] × [0, 1] ∪
[1− t, 1] × [0, 1] defined on the cake C = [0, 1] × [0, 1]. This function describes

two rectangles that approach each other from two opposite sides of the cake (see
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Figure 4.12). It is not square-continuous. Intuitively, a square of side-length 1 is

created at time t = 0.5, when the two components of KC(t) meet. Formally, let

ε = 0.75. For every δ > 0, select t = 0.5− δ
3 and t′ = 0.5+ δ

3 . Then KC(t′) contains

the square s′ = [0, 1]× [0, 1], but all squares s ⊆ KC(t) have a side-length of less

than 0.5, hence Lebesgue(s′ \ s) > 0.75 = ε.

The knife-functions in Figure 4.3/b,c,d,e are S-continuous but not S-smooth.

Thus one may think that S-continuity is more permissive than S-smoothness. But

this is not the case: S-continuity and S-smoothness are two independent proper-

ties. To see this, let S′ be the family of rectangle-pairs (defined as unions of two rect-

angles). The function KC defined in the previous paragraph (and Figure 4.12) is

S′-smooth, because both KC(t) and KC(t) are rectangle-pairs. However, KC is not

S′-continuous because some rectangle-pairs (e.g. [0, 1]× [0, 0.2] ∪ [0, 1]× [0.8, 1])

are created abruptly at time t = 0.5.

4.A.4 Conclusion

We proved two independent sufficient conditions for S-goodness. Combining

Lemmas 4.A.2 and 4.A.6 gives:

Corollary 4.A.8. If a knife-function is either S-smooth or S-continuous (or both), then

it is S-good.

Each of the two conditions, S-smoothness and S-continuity, is sufficient but

not necessary for S-goodness.

4.B Dividing a convex fat cake to convex fat pieces

The following theorem is a variant of Theorem 4.1(c) in Subsection 4.4.4, in which

the cake must be convex and the pieces are guaranteed to be convex.

The convexity requirement, while seemingly simple, implies that we cannot

use the usual knife functions anymore. For example, if C is a circle then every

knife function (which must be a straight line to keep the pieces convex) must

start with an infinitely slim piece. Hence we must use another technique which

can be called a rotating-knife.
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θ

Figure 4.13: Dividing a convex R-fat cake to two people.
The cake (the ellipse) is divided by a rotating knife (dotted line) to two 2R-fat
convex pieces. This is a convex variant of Figure 4.6.

Theorem. For every R ≥ 1, If C is an R-fat 2-dimensional convex figure and S is the

family of convex 2R-fat pieces then:

PropEF(C, S, 2) = 1/2

Proof. Scale, rotate and translate the cake C such that the largest square contained

in C is B− = [−1, 1]× [−1, 1]. By definition of fatness, C is now contained in a

square B+ of side-length at most 2R.

Consider a line passing through the origin at angle θ ∈ [0◦, 360◦] from the x

axis (see Figure 4.13). This line cuts the contained square B− into two quadran-

gles, each of which contains a square with side-length 1. Because C is convex,

this line also cuts the boundary of C at exactly two points, splitting C to two

convex pieces. Each of these two pieces is 2R-fat since it contains a square with

side-length 1 and it is contained in B+ whose side-length is 2R.

Let W(θ) be the value of the piece for agent #1 at the left-hand side of the

line when facing at angle θ. Because the value measure is continuous, W is con-

tinuous. When θ rotates by 180◦, the piece that was at the left-hand side is now

at the right-hand side and vice versa (e.g. when θ = 0◦ the left-hand side is

above the line and when θ = 180◦ the right-hand side is above the line). Hence if

W(θ) > 1/2 then W(180◦ + θ) = 1−W(θ) < 1/2 and vice versa. Hence by the

continuity of W there must be a θ for which W(θ) = 1/2. Cut the cake at the line

in angle θ. Let agent #2 choose a piece and give the other piece to agent #1. Now

both agents have a piece which is convex and 2R-fat and their value is at least

1/2.

So far we have not managed to generalize the rotating-knife technique to more
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than two agents.
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5.1 Introduction

The classic cake-cutting setting assumes a one-shot division: the resource is di-

vided once and for all, like a cake that is divided and eaten soon after it comes out

of the oven. But in practice, it is often required to re-divide an already-divided re-

source. One example is a cloud-computing environment, where new agents come

and require resources held by other agents. A second example is fair allocation

of radio spectrum among several broadcasting agencies: it may be required to

re-divide the frequencies to accommodate new broadcasters. A third example is

land-reform: large land-estates are held by a small number of landlords, and the

government may want to re-divide them to landless citizens.

In the classic one-shot division setting, there are n agents with equal rights.

The goal is to give each agent a fair share of the cake. Ideally we would like to

give each agent a piece worth at least 1/n of the total cake value — a requirement

called “proportionality” (see Chapter 2 on page 10). If this is not possible, we

would like to give each agent at least a fraction r/n of the total cake value, where

r ∈ (0, 1) is constant independent of n. We call this requirement r-proportionality.

In contrast, in the re-division setting, there is an existing division of the cake

among the n agents. This division is not necessarily fair; in particular, there may

be some agents whose allocation is empty. If the cake is re-divided, it may be

required to give extra rights to the existing landlords. In particular, it may be

required to give each landlord the opportunity to keep a substantial fraction of

its current value. This may be due either to efficiency reasons (in the cloud com-

puting scenario) or economic reasons (in the radio spectrum scenario) or political

reasons (in the land-reform scenario). We call this requirement ownership. Given

a constant w ∈ (0, 1), w-ownership means that each agent receives at least w times

its old value. The main question in this chapter is:

Can positive levels of proportionality and ownership be attained si-

multaneously?

5.1.1 Results

Our first result answers this question positively.
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Theorem 5.1. For every constants r, w ∈ [0, 1] where r + w ≤ 1, and for every existing

division of the cake, there exists a division that simultaneously satisfies r-proportionality

and w-ownership. Moreover, when r, w are constant rational numbers, such a division

can be found in time O(n2).

The parameters r, w represent the level of balance between two principles:

large r means more emphasis on fairness while large w means more emphasis

on ownership rights. As an example, taking r = w = 1/2, Theorem 5.1 implies

that it is possible to re-divide the cake, giving each agent at least half its previous

value, while simultaneously giving each agent at least 1/(2n) of the total cake

value.

The balance parameters can also be given probabilistic interpretation. Sup-

pose the government wants to do a land reform and needs the agreement of the

current landowners. Naturally, the current landowners do not want to give away

their lands. However, they may fear that, without land-reform, the landless cit-

izens might revolt and they might lose all their lands. If the landowners believe

that the probability of a successful revolt is 1− w, then they will agree to a land-

reform that guarantees w-ownership. Theorem 5.1 implies that, in this case, it is

possible to carry out a land-reform that guarantees (1− w)-proportionality.

The following proposition shows that the balance given by Theorem 5.1 is

tight:

Proposition 5.1. For every constants r, w ∈ [0, 1] where r+w > 1, it may be impossible

to simultaneously guarantee r-proportionality and w-ownership.

Geometric constraints

While Theorem 5.1 is encouraging, it ignores an important aspect of practical di-

vision problems: geometry. The division it guarantees may be highly fractioned,

giving each agent a large number of disconnected pieces. But in land division (as

well as many other practical division problems), the agents may want to receive a

single connected piece. Can partial-proportionality and partial-ownership be at-

tained simultaneously with a connectivity constraint? The following proposition

answers this question negatively.
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Proposition 5.2. When the cake is a 1-dimensional interval and each piece must be an

interval, for every positive constants r, w ∈ (0, 1), it may be impossible to simultaneously

satisfy r-proportionality and w-ownership. Moreover, for every r > 0 and every integer

k ∈ {1, . . . , n}, there might be k agents who, in any r-proportional division, receive at

most a fraction 1/bn
k c of their old value.

The latter part of the proposition involves a property much weaker than pro-

portionality: all we want is to guarantee each agent a positive value. With the

connectivity constraint, even this weak “positivity” requirement is incompatible

with w-ownership for every constant w > 0: a positive division might require us

to give one agent at most 1/n of its previous value, give two agents at most 2/n

of their previous value, give n/3 agents at most 1/3 of their previous value, etc.

Proposition 5.2 motivates the following weaker ownership requirement: for

every k, at least n− k agents receive at least a fraction 1/bn
k c of their old value.

For example (taking k = n/3 and assuming all quotients are integers), at least

2n/3 agents should receive at least 1/3 of their old value. This criterion is in-

spired by the ”90th percentile” criterion common in Service-Level-Agreements

and Quality-of-Service analysis, e.g. Zhang et al. (2014); Delimitrou and Kozyrakis

(2014). It can also be justified by political reasoning: in a democratic country, it

may be sufficient to win the support of a sufficiently large majority.

Our following results almost match this relaxed ownership criterion. For-

mally, the democratic ownership property means that, for every integer k ∈
{1, . . . , n}, at least n− k agents receive at least a fraction 1/dn

k e of their previous

value. Democratic-ownership is almost the same as the upper bound implied

by Proposition 5.2; the only difference is that in the upper bound the fraction

is rounded downwards (1/bn
k c) while in democratic-ownership the fraction is

rounded upwards.

Theorem 5.2. When the cake is a 1-dimensional interval and each piece must be an

interval, it is possible to find in time O(n2 log n) a division simultaneously satisfying

democratic-ownership and 1/3-proportionality.

It is an open question whether democratic-ownership is compatible with r-

proportionality for some r > 1/3.
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Figure 5.1: With geometric constraints, a Pareto-efficient division might paradox-
ically have to discard some of the cake.

Theorem 5.2, like most cake-cutting papers, assumes that the cake is 1-dimensional.

In realistic division scenarios, the cake is often 2-dimensional and the pieces

should have a pre-specified geometric shape, such as a rectangle or a convex

polygon. Rectangularity and convexity requirements are sensible when divid-

ing land, exhibition space in museums, advertisement space in newspapers and

even virtual space in web-pages. Moreover, in the frequency-range allocation

problem, it is possible to allocate frequency ranges for a limited time-period; the

frequency-time space is two-dimensional and it makes sense to require that the

”pieces” are rectangles in this space (Iyer and Huhns, 2009).

2-dimensional cake-cutting introduces new challenges over the traditional 1

dimensional setting. As an example, in one dimension, it can be assumed that

the initial allocation is a partition of the entire cake; this is without loss of gener-

ality, since any ”blank” (unallocated part) can just be attached to a neighboring

allocated interval without harming its shape or value. However, in two dimen-

sions, the initial allocation might contain blanks that cannot be attached to any

allocated piece due to the rectangularity or convexity constraints. For example,

suppose the cake is as the rectangle in Figure 5.1. There are 4 agents and each

agent i has positive value-density only inside the rectangle Zi. The most reason-

able division (e.g. the only Pareto-efficient division) is to give each Zi entirely to

agent i. But, this allocation leaves a blank in the center of the cake, and this blank

cannot be attached to any allocated piece due to the rectangularity constraint.

This counter-intuitive scenario cannot happen in a one-dimensional cake. Han-

dling such cases requires new geometry-based tools. Using such tools we can

prove analogues of Theorem 5.2 to two common 2-dimensional settings.
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Figure 5.2: A rectilinear polygon with 4 reflex vertexes (circled).

Theorem 5.3. When the cake is a rectangle and each piece must be a parallel rectangle,

it is possible to find in time O(n2 log n) a division simultaneously satisfying democratic-

ownership and 1/4-proportionality.

Theorem 5.4. When the cake is a 2-dimensional convex polygon and each piece must

be convex, it is possible to find in time O(n2 log n) a division simultaneously satisfying

democratic-ownership and 1/5-proportionality.

Remark. In the interval, rectangle and convex settings, the geometric constraints

are mostly harmless without the ownership requirement: when the cake is an

interval or a rectangle or a convex object, classic algorithms for proportional cake-

cutting, such as Even–Paz (Even and Paz, 1984), can be easily made to return

interval/rectangle/convex pieces by ensuring that the cuts are parallel. Similarly,

the ownership requirement is easy to satisfy without the geometric constraints,

as shown by Theorem 5.1. It is the combination of these two requirements that

leads to interesting challenges.

Our next result generalizes Theorem 5.3 to a cake that is a rectilinear polygon —

a polygon all whose angles are 90◦ or 270◦. Rectilinearity is a common assump-

tion in polygon partition problems (Keil, 2000). The ”complexity” of a rectilinear

polygon is characterized by the number of its reflex vertexes — vertexes with a

270◦ angle. We denote the cake complexity by T. A rectangle — the simplest

rectilinear polygon — has T = 0. The cake in Figure 5.2 has T = 4 reflex vertexes.

Theorem 5.5. When the cake is a rectilinear polygon with T reflex vertexes, and each

piece must be a rectangle, it is possible to find in time O(n2 log n + poly(T)) a division

satisfying democratic-ownership, in which each agent receives at least 1/(4n + T) of the

total cake value.1

1The guarantee of 1/(4n + T) is calculated as a fraction of the total cake value. However, with
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Cake Pieces Value guarantee Ownership
Arbitrary Arbitrary r/n for any r ∈ [0, 1] 1− r
Interval Intervals 1/(3n) Democratic

Rectangle Rectangles 1/(4n) Democratic
Convex 2-d Convex 2-d 1/(5n) Democratic

Rectilinear with T ref.vert. Rectangles 1/(4n + T) Democratic

Table 5.1: Summary of results for cake redivision: ownership and proportional-
ity guarantees.

Price-of-fairness

Redivision protocols can be used not only to compromise between old and new

agents, but also to compromise between fairness and efficiency. Often, the most

economically-efficient allocation is not fair, while a fair allocation is not economically-

efficient. The trade-off between fairness and efficiency is quantified by the price-

of-fairness (Bertsimas et al., 2011, 2012; Caragiannis et al., 2012; Aumann and Dombb,

2010). It is defined as the worst-case ratio of the maximum attainable social-

welfare to the maximum attainable social-welfare of a fair allocation. The social

welfare is usually defined as the arithmetic mean of the agents’ values (also called

utilitarian welfare) or their geometric mean (also called Nash welfare, see Moulin

(2004) and Caragiannis et al. (2016)).

A redivision protocol can be used to calculate an upper bound on the price of

fairness in the following way. Take a welfare-maximizing allocation as the initial

allocation; use a redivision protocol to produce a partially-proportional allocation

in which the utility of each agent is close to its initial utility; conclude that the new

welfare is close to the initial (maximal) welfare.

Without geometric constraints, we have the following upper bound:

Theorem 5.6. For every constant r ∈ [0, 1], the utilitarian-price of r-proportionality is

at most 1/(1− r).

Note that when r = 1, the bound is infinity. Indeed, Caragiannis et al. (2012)

a rectilinear cake and a rectangular piece, even a single agent cannot always get the entire cake
value to itself. Therefore, one could think of an alternative guarantee where the benchmark for
each agent is the largest value that this agent can attain in a rectangle. For example, we could
guarantee each agent a fraction 1/(4n) of the value of its most valuable rectangle. However, such
guarantee might be much worse than the guarantee of Theorem 5.5. The proof in Appendix 5.A
implies that the value of the most valuable rectangle might be as small as 1/(T + 1) of the total
cake value. Therefore, the alternative guarantee of 1/(4n) this value translates to a guarantee of
1/(O(n · T)) — much worse than the 1/(O(n + T)) guaranteed by Theorem 5.5.
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proved that the price of 1-proportionality in this setting is Θ(
√

n), which is not

bounded by any constant. Our results show that by making a small compromise

on the level of proportionality we can get a constant (independent of n) bound on

the utilitarian-price. The parameter r sets the level of trade-off between fairness

and efficiency.

With geometric constraints, we have the following upper bounds:

Theorem 5.7. When the cake is an interval and each piece must be an interval, for every

B ≥ 3:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 8.4.

Theorem 5.8. When the cake is a rectangle and each piece must be a rectangle, for every

B ≥ 4:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 11.2.

Theorem 5.9. When the cake is convex polygon and each piece must be convex, ∀B ≥ 5:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 14.

Note that the first claim in Theorem 5.7 is subsumed by Aumann and Dombb

(2010), who prove that the utilitarian-price of 1-proportionality in this setting is

Θ(
√

n). We bring this claim only for completeness. The second claim in this

theorem, as well as the following theorems which deal with two-dimensional

constraints, are not implied by previous results.

5.1.2 Related Work

Dynamic fair division

Our cake redivision problem differs from several division problems studied re-

cently.
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Cake Pieces Value guarantee Utilitarian price Nash price
Arbitrary Arbitrary r/n for any r ∈ [0, 1] 1/(1− r) 1
Interval Intervals 1/(3n) O(

√
n) 8.4

Rectangle Rectangles 1/(4n) O(
√

n) 11.2
Convex 2-d Convex 2-d 1/(5n) O(

√
n) 14

Table 5.2: Summary of price-of-fairness upper bounds, Note that the price is a
ratio. This means that a price of 1 means “no price”. Indeed, the Nash price of
proportionality is 1, since the Nash-optimal division is always envy-free, hence
also proportional.

1. Dynamic resource allocation (Kash et al., 2013; Friedman et al., 2015) is a

common problem in cloud-computing environments. The server has several re-

sources, such as memory and disk-space. Agents (processes) come and depart.

The server has to allocate the resources fairly among agents. When new agents

come, the server may have to take some resources from existing agents. The goal

is to do the re-allocation with minimal disruption to existing agents (Friedman

et al., 2015). A different but related problem is the food-bank problem, where a char-

ity organization receives food donations and must decide on-line to whom each

donation should be allocated (Aleksandrov et al., 2015). In these problems, the

resources are homogeneous, which means that the only thing that matters is what

quantity of each resource is given to each agent. In contrast, our cake is hetero-

geneous and different agents may have different valuations on it, so our protocol

must decide which parts of the cake should be given to which agent.

2. Population monotonicity (Thomson, 1983; Moulin, 1990a, 2004; Thomson,

2011) is an axiom that describes a desired property of allocation rules. When

new agents arrive and the same division rule is re-activated, the value of all old

agents should be weakly smaller than before. This axiom represents the virtue

of solidarity: if sacrifices have to be made to support an additional agent, then

everybody should contribute (Thomson, 1983). We, too, assume that old agents

are taking part in supporting the new agents. However, we add the ownership

requirement, which means that old agents should be allowed to keep at least

some of their previous value. In addition, while their approach is axiomatic and

mainly interested in existence results, our approach is constructive and our goal

is to provide an actual re-division protocol.
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Recently, we have started to study monotonicity axioms, such as population-

monotonicity and resource-monotonicity, in the context of cake-cutting; see Szik-

lai and Segal-Halevi (2015).

3. Private endowment in economics resource allocation problems means that

each agent is endowed with an initial bundle of resources. Then, agents exchange

resources using a market mechanism. The classic problem in economics involves

homogeneous resources, but it has also been studied in the cake-cutting frame-

work (Berliant and Dunz, 2004; Aziz and Ye, 2014). A basic requirement in these

works is individual rationality, which means that the final value allocated to each

agent must be weakly larger than the value of the initial endowment (note the

contrast with the population monotonicity axiom). In our problem we do not

make this assumption as it is incompatible with fairness: since some agents may

initially own no land, individual rationality would mean that they might not re-

ceive anything in the exchange.

4. Online cake-cutting (Walsh, 2011) is characteristic of a birthday party in an

office, in which some agents come or leave early while others come or leave late.

It is required to give some cake to agents who come early while keeping a fair

share to those who come late. In contrast to our model, there it is impossible to

re-divide allocated pieces, since they are eaten by their receivers. The fairness

guarantees are inevitably weaker.

5. Land reform is the re-division of land among citizens. It has been attempted

in numerous countries around the globe and in many periods throughout his-

tory. Some books on land reform are Powelson (1988); Bernstein (2002); Rosset

et al. (2006); Lipton (2009). The earliest recorded land-reform was done in an-

cient Egypt in the times of King Bakenranef, 8th century BC. The most recent

land-reform act has been legislated in Scotland in 2016 AD. The balance between

fairness and ownership rights is a major concern in such reforms (Sellar, 2006;

Hoffman, 2013; Wightman, 2015; MacInnes and Shields, 2015).
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Price of fairness

The price-of-fairness has been studied in various contexts, such as routing and

load-balancing (Bertsimas et al., 2011, 2012) and kidney exchange (Dickerson

et al., 2014). The price-of-fairness in cake-cutting has been studied in two set-

tings:

• The cake is a one-dimensional interval and the pieces must be intervals (Au-

mann and Dombb, 2010). The utilitarian-price-of-proportionality in this

case is Θ(
√

n).

• The cake is arbitrary and the pieces may be arbitrary (Caragiannis et al.,

2012). The utilitarian-price-of-proportionality in this case is Θ(
√

n) too.

Both papers study the price of other fairness criteria such as envy-freeness and

equitability, but do not study the price in Nash-welfare. Additionally, they do not

handle two-dimensional geometric constraints such as rectangularity or convex-

ity.

Several authors study the algorithmic problem of finding a welfare-maximizing

cake-allocation allocation in various settings:

1. The cake is an interval and the pieces must be connected (Aumann et al.,

2013);

2. The cake is an interval and the pieces must be connected, and additionally,

the division must be proportional (Bei et al., 2012);

3. The cake and pieces are arbitrary, and the division must be envy-free (Cohler

et al., 2011).

4. The cake and pieces are arbitrary, and the division must be equitable (Brams

et al., 2012).
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5.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal defini-

tions).

• C is the cake to be divided. In this chapter it will be an interval or a polygon

in R2.

• S is the family of pieces that are considered usable. In this chapter it will be

the family of intervals, rectangles or convex objects. An S-allocation is an

allocation in which all pieces are elements of S.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece

Xi.

In this chapter, for every constant r ∈ (0, 1), an allocation X is called r-proportional

if every agent receives at least r/n of the total cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥
r
n
·Vi(C)

(note that this definition is slightly different than in the previous two chapters).

A 1-proportional division is usually called in the literature “proportional”.

5.2.1 Cake redivision

There is an existing S-allocation of the cake: Z1, . . . , Zn. It is assumed that the old

pieces Zj are pairwise-disjoint and ∀j : Zj ∈ S, but nothing else is assumed on

the division. In particular, the initial division is not necessarily proportional, and

some of C may be undivided.

It is required to create a new S-allocation of C to all agents: X1, . . . , Xn. For

every constant w ∈ (0, 1), the re-allocation satisfies the w-ownership property if

every agent receives at least a fraction w of its old value:

∀j ∈ {1, . . . , n} : Vj(Xj) ≥ w ·Vj(Zj)

Since w-ownership is not always compatible with r-proportionality for any r > 0,

we define the following weaker property. A re-allocation satisfies the democratic-
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ownership property if, for every k ∈ {1, . . . , n}, there are at least n − k indexes

j ∈ {1, . . . , n} for which:

Vj(Xj) ≥
1

dn/ke ·Vj(Zj).

5.2.2 Social-welfare and Price-of-fairness

In addition to fairness, it is often required that a division has a high social welfare.

The social welfare of an allocation is a certain aggregate function of the normal-

ized values of the agents (the normalized value is the piece value divided by

the total cake value). Common social welfare functions are sum (utilitarian) and

product (Nash); see Moulin (2004). We normalize them such that the maximum

welfare is 1:

• Utilitarian welfare — the arithmetic mean of the agents’ normalized values:

Wutil(X) =
1
n ∑

i∈{1,...,n}

Vi(Xi)

Vi(C)

• Nash welfare — the geometric mean of the agents’ normalized values:

WNash(X) =


 ∏

i∈{1,...,n}

Vi(Xi)

Vi(C)




1/n

The goal of maximizing the social welfare is not always compatible with the goal

of guaranteeing a fair share to every agent. For example, Caragiannis et al. (2012)

describe a simple example in which the maximum utilitarian welfare of a propor-

tional allocation is O(1/n) while the maximum utilitarian welfare of an arbitrary

(unfair) allocation is O(1/
√

n). This means that society has to pay a price, in

terms of social-welfare, for insisting on fairness. This is called the price of fair-

ness. Formally, given a social welfare function W and a fairness criterion F, the

price-of-fairness relative to W and F (also called: ”the W-price-of-F”) is the ratio:

supX W(X)

supY∈F W(Y)
(*)
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where the supremum at the nominator is over all allocations X and the supremum

at the denominator is over all allocations Y that also satisfy the fairness criterion

F. The cited example shows that the utilitarian-price-of-proportionality might be

Ω(
√

n).

When there are geometric constraints, they affect both the numerator and the

denominator of (*), i.e, the suprema are taken only on S-allocations. Therefore,

it is not a-priori clear whether the price-of-fairness with constraints is higher or

lower than without constraints.

5.3 Arbitrary Cake and Arbitrary Pieces

This section proves Theorem 5.1, which assumes no geometric constraints on the

cake or pieces. The main lemma is:

Lemma 5.3.1. Given cake-allocations Z and Y and a constant r ∈ [0, 1], there exists an

allocation X such that, for every agent i:

Vi(Xi) ≥ rVi(Yi) + (1− r)Vi(Zi)

Moreover, when r is a constant rational number, X can be found using O(n2) mark/eval

queries.

Proof. We first give an existential proof. Consider the set of all possible cake-

partitions. For each cake-partition, consider the n × 1 vector of utilities of the

agents. The Dubins–Spanier theorem (Dubins and Spanier, 1961) says that the set

of all such vectors is convex. Therefore, there exists an allocation X satisfying the

requirement as an equality: ∀i : Vi(Xi) = rVi(Yi) + (1− r)Vi(Zi).

Since the Dubins–Spanier theorem (Dubins and Spanier, 1961) is not construc-

tive, we give here a constructive protocol for creating the allocation Z when r is

a rational number, r = p/q with p < q some positive integers. For every pair of

agents i, j (including when i = j), the protocol works as follows:

Step 1. Agent i divides the piece Zi ∩ Yj to q pieces that are equal in its

eyes.
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Step 2. Agent j takes the p pieces that are best in its eyes.

Step 3. Agent i takes the remaining q− p pieces.

(Note that when i = j, agent i receives the entire piece Zi ∩Yi).

Each agent i is allocated a piece Xi which is a union of nq pieces: np pieces that

agent i took from other agents (including itself) in piece Yi and n(q − p) pieces

that were left for agent i from other agents in piece Zi.

From every piece Yi ∩ Zj (for j ∈ {1, . . . , n}), agent i picks the best p out of q

pieces, which give it a value of at least p
q Vi(Yi ∩ Zj). Its total value of these np

pieces is thus at least rVi(Yi).

In addition, from every piece Zi ∩Yj (for j ∈ {1, . . . , n}), agent i receives q− p

out of q equal pieces, which give it a value of exactly q−p
q Vi(Zi ∩Yj). Its total value

of these n(q− p) pieces is thus exactly (1− r)Vi(Zi).

Proof of Theorem 5.1. We are given a pair r, w where r + w ≤ 1. Apply Lemma

5.3.1, with:

Y — any proportional allocation, which can be found by classic protocols such

as Steinhaus (1948); Even and Paz (1984).

Z — the initial allocation.

The new division satisfies r-proportionality and (1− r)-ownership. By assump-

tion 1− r ≥ w.

Note that the redivision protocol gives to each agent a piece that is not only worth

at least (1− r)Vi(Zi), but is also a subset of Zi (in addition to a subset of Yi). This

may be desirable in some cases, e.g. in land division, the old landlords may care

not only about their value but also about getting a subset of their old plot.

Remark. The O(n2) complexity assumes the integers p, q are constant (not part

of the input). If they are considered part of the input, then the complexity be-

comes linear in q which is exponential in the number of input bits. The number

of queries can be reduced using concepts from number theory, but this is beyond

the scope of this paper. See McAvaney et al. (1992); Robertson and Webb (1998)

for details.
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Finally we show that the balance guaranteed by Theorem 5.1 is asymptotically

tight.

Proof of Proposition 5.1. We are given a pair r, w where r + w > 1. Consider the

following scenario. In the initial allocation, a single agent owns the entire cake.

All n agents have the same value-density and they value the entire cake as 1. In

any r-proportional division, the n− 1 landless citizens must receive a total value

of (n− 1)r/n = r− r/n. Therefore the old landlord receives at most 1− r + r/n.

By assumption, 1− r < w. Therefore, if n is sufficiently large, the old landlord

receives less than w of his previous value, so the division does not satisfy w-

ownership.

5.4 Interval Cake and Interval Pieces

In this section, the cake is an interval in R. Each piece in the initial division is an

interval in C and each piece in the new division must be an interval in C. We begin

by proving the impossibility result (Proposition 5.2), using a lemma opposite to

Lemma 5.3.1.

Lemma 5.4.1. Let Z be a connected allocation, r ∈ (0, 1) a positive constant and k ≤
n an integer. Then there exist valuations such that, in every connected r-proportional

allocation X, for every agent j ∈ {1, . . . , k}: Vj(Xj) ≤ Vj(Zi)/bn
k c.

Proof. Assume that the valuations are as follows. Each agent j ∈ {1, . . . , k} values

the piece Zj as bn
k c and the rest of the cake as 0. The value-density of j in Zj is

piecewise-uniform: It has bn
k c regions with a value of 1 and bn

k c − 1 ”gaps” —

regions with a value of 0. The other n − k agents are divided to k groups of

roughly equal size: the size of each group is either bn−k
k c = bn

k c − 1 or dn−k
k e =

dn
k e − 1. Each agent in group j assigns a positive value only to a unique gap in

the piece Zj (so when the group size is bn
k c − 1, each gap is wanted by exactly

one agent; otherwise, there is one gap wanted by two agents). The following

figure illustrates the value-densities that are positive in piece Z1. The solid boxes

represent the value-density of agent #1; each dotted box represents the value-

density of a single agent from group #1.
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In any positive division, each gap in Zj must be at least partially allocated to an

agent in group j. Hence, the interval allocated to agent j must contain at most a

single positive region in Zj — it is not allowed to overlap any gap. Therefore the

value of agent j is at most Vj(Zj)/bn
k c.

Proof of Proposition 5.2. Apply Lemma 5.4.1 with Z = the initial allocation.

To prove the matching positive result (Theorem 5.2), we introduce a proto-

col for fair division of an ”archipelago” — a cake made of one or more interval

”islands”.

Lemma 5.4.2. Let C be a cake made of m ≥ 1 pairwise-disjoint intervals: C = Z1 ∪
· · · ∪ Zm. There exists a division X of C among n agents, in which (a) Each agent i

receives an interval entirely contained in one of the islands: ∀i : ∃j : Xi ⊆ Zj, and (b)

Each agent receives a value of at least Vi(C)/(n + m − 1). Moreover, X can be found

using O(mn log n) mark/eval queries.

Proof. We normalize the value measures of all agents such that the total value of

C is n + m− 1. The following recursive protocol allocates each agent an interval

with a value of at least 1.

Base: m = 1. The cake is a single interval and its total value is n. Use the

Even–Paz protocol (Even and Paz, 1984) to allocate each agent an interval

with a value of at least 1.

Step: m > 1.

1. Ask each agent i ∈ {1, . . . , n} to evaluate the island Zm.

2. Order the agents in descending order of their evaluation: V1(Zm) ≥
· · · ≥ Vn(Zm).

3. Let q be the largest integer such that Vq(Zm) ≥ q (or 0 is already

V1(Zm) < 1).

4. If q = 0, discard the island Zm. Otherwise (q ≥ 1),
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divide Zm proportionally among the agents {1, . . . , q} using Even–Paz

protocol (Even and Paz, 1984).

5. Divide the remaining m − 1 islands recursively among the remaining

n− q agents.

The descending order of the agents guarantees that: V1(Zm) ≥ · · · ≥ Vq(Zm) ≥
q. So in step #4, the interval Zm is divided proportionally among q agents that

value it as at least q, and each of these agents receives an interval with a value of

at least 1.

By definition of q, Vq+1(Zm) < q + 1 (this is true even when q = 0). By the

descending order of the agents, the same is true for all remaining agents {q +

1, . . . , n}. Therefore, all remaining agents value the remaining cake as more than

(m + n− 1)− (q + 1) = (n− q) + (m− 1)− 1. Since there are n− q agents and

m− 1 islands, the recursive algorithm gives each agent an interval with value at

least 1. The Even–Paz protocol requires O(n log n) queries, and it is done at

most m times, so the total number of queries is O(mn log n).

Remark. The fraction of 1/(n+m− 1), guaranteed by Lemma 5.4.2, is the largest

that can be guaranteed. To see this, assume that all agents i ∈ {1, . . . , n} have the

same value-measures — they value the islands Z1, . . . , Zm−1 as 1 and the island

Zm as n (so their total cake value is n + m − 1). The piece of every agent must

be entirely contained in a single island. If any agent receives a piece in islands

Z1, . . . , Zm−1, then that agent receives a value of at most 1. Otherwise, if all n

agents receive a piece in Zm, then the value of at least one agent is at most 1. In

both cases, at least one agent receives a fraction of at most 1/(n + m− 1) the cake

value.

Proof of Theorem 5.2. Our protocol for re-division of an interval has three steps.

Step 1. Given the original partial allocation Z1 ∪ · · · Zn ⊆ C, extend it to a

complete allocation Z′1 ∪ · · · Z′n = C, by attaching each ”blank” (unallocated

interval in C) arbitrarily to one of the two adjacent allocated intervals. This,

of course, does not harm the old values: ∀j ∈ {1, . . . , n} : Vj(Z′j) ≥ Vj(Zj).
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Step 2. For each agent j ∈ {1, . . . , n}, add a “helper agent” j∗ and assign it

a value-density function v∗j :

v∗j (x) = vj(x) if x ∈ Z′j

v∗j (x) = 0 if x /∈ Z′j

Use the protocol of Lemma 5.4.2 with n + n agents, regarding the cake C as

an archipelago and the pieces Z′1, . . . , Z′n as the islands.

Step 3. Give each agent j ∈ {1, . . . , n} either the interval allocated to its

normal agent j or the interval allocated to its helper agent j∗, whichever is

more valuable for it.

We now prove that the resulting allocation is 1/3-proportional and satisfies

the democratic-ownership property.

(a) Proof of 1/3-proportionality. We apply Lemma 5.4.2 with 2n agents and m = n

islands. Each of the 2n agents receives an interval contained in one of the pieces

Z′1, . . . , Z′n, with a value of at least 1/((2n)+ n− 1) its total cake value. This value

is larger than 1/(3n).

(b) Proof of democratic-ownership. We focus on the n helper agents. First, by

Lemma 5.4.2, every helper agent j∗ must receive an interval contained in Z′j, since

its value is positive only in the island Zj. Moreover, by the pigeonhole principle,

for every integer k ≤ n, at most k islands are populated by at least dn
k e normal

agents. Hence, at least n − k islands are populated by at most dn
k e − 1 normal

agents. Adding the helper agent, these islands are populated by at most dn
k e

agents. Hence, the proportional allocation of step #4 in the protocol of Lemma

5.4.2 gives these helper agents an interval subset of Z′j, which is worth for agent j

at least Vj(Z′j)/dn
k e.

5.5 Polygonal Cake and Polygonal Pieces

Rectangle cake and pieces. Initially, we assume that the cake is a rectangle in

R2. Each piece in the initial division is a rectangle parallel to C and each piece in

173



⇒

Figure 5.3: The allocation-completion step: input and output.

the new division must be a rectangle parallel to C.

We would like to use the re-division protocol of Theorem 5.2. Steps #2 and #3

are easily adapted: the Even–Paz protocol (Even and Paz, 1984) can operate on

a rectangular cake, requiring the agents to make cuts parallel to the cake sides.

This guarantees that the pieces are rectangles.

However, there is one obstacle. Step #1, the allocation-completion step, is no

longer trivial. We cannot just attach each unallocated part of C to an allocated

rectangle, since the result will not necessarily be a rectangle. We still need to

extend the initial partial allocation Z1 ∪ · · · Zn ⊆ C to a complete allocation, but

the number of rectangles in the complete allocation might be larger than n, since

we might have unattached blanks.

Our goal, then, is to find a partition of C to rectangles, Z′1 ∪ · · · Z′n+b = C, with

b ≥ 0, such that every input rectangle is contained in a unique output rectangle:

∀j ∈ {1, . . . , n} : Zj ⊆ Z′j. The additional b rectangles are called blanks. In Step 3,

we will have m = n + b islands and 2n agents, so the value guarantee per agent

will be 1/((2n) + (n + b) − 1) = 1/(3n + b − 1); therefore, we would like the

number of blanks b to be as small as possible.

An example of the input and output of the allocation-completion step is shown

in Figure 5.3. Here, b = 1 since there is one blank — Z′5. In this case b = 1 is min-

imal.

Convex cake and pieces. The situation is similar when C is convex and the

pieces should be convex. The Even–Paz protocol can operate on a convex cake,

requiring the agents to make cuts parallel to the each other. This guarantees that

the pieces will be convex. In Step #1, a similar challenge arises. We have an initial
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partial allocation Z1 ∪ · · · Zn ⊆ C, where each Zj is convex. We need a complete

allocation Z′1 ∪ · · · Z′n+b = C, where each Z′j is convex, every input piece is con-

tained in a unique output piece, and the number of blanks b is minimal.

Rectilinear cake and rectangular pieces. There are efficient algorithms for par-

titioning a rectilinear polygon to a minimal number of rectangles. A rectilinear

polygon with T reflex vertexes can be partitioned in time O(poly(T)) to at most

T + 1 rectangles (Keil, 2000; Eppstein, 2010), and this bound is tight when the

vertexes of C are in general position. Our goal is to bound b — the number of

blank rectangles. Therefore, it is expected that the bound should depend on T, in

addition to m.

The allocation-completion step for all two-dimensional settings is handled by

the Akopian and Segal-Halevi (2016), who prove the following lemma:

Lemma 5.5.1 ((Akopian and Segal-Halevi, 2016)). There is an O(m)-time algorithm

that extends a partial allocation Z1∪ · · · Zm ⊆ C to a complete allocation Z′1∪ · · · Z′m+b =

C, such that there are:

(a) at most m− 2
√

m−O(1) rectangular blanks when the cake & pieces are parallel

rectangles:

(b) at most 2m− 5 convex blanks when the cake and pieces are convex polygons;

(c) at most m + T − 2
√

m −O(1) rectangular blanks when the cake is rectilinear

with T reflex vertexes and the pieces are rectangles. In this case the run-time is O(m +

poly(T)).

The numbers of blanks in all cases are tight.

Proof of Theorems 5.3, 5.4 ,5.5 . Use the protocol of Theorem 5.2, plugging into Step

#1 the algorithm of Lemma 5.5.1 with m = n. The value per agent is at least

1/(3n + b− 1), which is:

(a) at least 1/(4n − 2
√

n) > 1/(4n) in the rectangle case — satisfying 1/4-

proportionality;

(b) at least 1/(5n− 6) ≥ 1/(5n) in the convex case — satisfying 1/5-proportionality;

(c) at least 1/(4n + T − 2
√

n) > 1/(4n + T) in the rectilinear case.
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5.6 Price-of-Fairness Bounds

In this section, our redivision protocols are used to prove upper bounds on the

price of partial-proportionality.

Theorem 5.6 follows directly from Theorem 5.1 by taking the original division

to be a utilitarian-optimal division.

The proofs of Theorems 5.7, 5.8 and 5.9 are similar; only the constants are

different. We present below only the proof of Theorem 5.8; to get the proofs of

the other theorems, replace the constant ”4” with ”3” or ”5” respectively.

The first part of Theorem 5.8 — regarding the utilitarian price — is proved by

the following:

Lemma 5.6.1. Let Z be a utilitarian-optimal rectangular division of a cake C among n

agents who value the entire cake C as 1. Let U be the utilitarian welfare of Z:

U :=
1
n

n

∑
j=1

Vj(Zj)

Then, there exists a (1/4)-proportional rectangular allocation of C to these same n agents

with utilitarian welfare W, such that U/W ∈ O(n1/2).

Proof. Apply the redivision protocol of Section 5.5 to the existing division by set-

ting m = n and treating all n agents as ”old”. The partial-proportionality guaran-

tee of that protocol ensures that the new division is 1/4-proportional. The partial-

ownership of that protocol ensures that for every integer k ∈ {0, . . . , n}, there is a

set Sk containing at least n− k agents whose value is more than max(
kVj(Zj)

2n , 1
4n ).

Renumber the agents in the following way. Pick an agent from Sn−1 (which con-

tains at least one agent) and number it n − 1. Pick an agent from Sn−2 (which

contains at least one other agent) and number it n − 2. Continue this way to

number the agents by k = n − 1, . . . , 0. Now, the utilitarian welfare of the new

division is lower-bounded by:

W >
1
n

n−1

∑
k=0

max(
kVk(Zk)

2n
,

1
4n

) ≥ 1
n
· 1

4n
·

n−1

∑
k=0

max(kVk(Zk), 1)
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and the utilitarian welfare ratio is at most:

U
W

< 4n · ∑n−1
k=0 Vk(Zk)

∑n−1
k=0 max(k ·Vk(Zk), 1)

Denote the ratio in the right-hand side by NUM
DEN . Let ak = Vk(Zk), so that

NUM = ∑n−1
k=0 ak and DEN = ∑n−1

k=0 max(k · ak, 1). To get an upper bound on

U/W, we find a sequence a0, . . . , an−1 that maximizes NUM
DEN subject to ∀k : 0 ≤

ak ≤ 1.

Observation 1. in a maximizing sequence, a0 = 1 and there is no k > 0 such

that ak < 1/k. Proof : Setting such ak to 1/k increases NUM and does not change

DEN.

Observation 2. A maximizing sequence must be weakly-decreasing (for all

k < k′, ak′ ≥ ak). Proof : if there exists k < k′ such that ak < ak′ , then we can swap

ak with ak′ . This does not change NUM but strictly decreases DEN.

Observation 3. In a maximizing sequence, there is no k > 0 such that 1/k <

ak < 1. Proof:2 If 1/k < ak < 1 then for some sufficiently small ε > 0, both

ak + ε and ak − ε are in (1/k, 1) and replacing ak with ak ± ε makes the ratio

strictly smaller than the maximum. Replacing ak with ak + ε makes the ratio
NUM+ε
DEN+kε ; this new ratio is smaller than NUM

DEN so ε ·DEN < kε ·NUM. Replacing

ak with ak − ε makes the ratio NUM−ε
DEN−kε ; that new ratio is smaller than NUM

DEN so

−ε ·DEN < −kε ·NUM. But the two latter inequalities ε ·DEN < kε ·NUM and

−ε ·DEN < −kε ·NUM are contradictory. Hence, the assumption 1/k < ak < 1

is false.

Observations 1-3 imply that a maximizing sequence has a very specific format.

It is characterized by an integer l ∈ {0, . . . , n− 1} such that, for all k ≤ l, ak = 1

and for all k ≥ l + 1, ak = 1/k. So:

NUM
DEN

=
∑n−1

k=0 ak

∑n−1
k=0 max(k · ak, 1)

=
(l + 1) + (Hn−1 − Hl)
1
2 l(l + 1) + (n− l − 1)

<
2(l + Hn + 1)

l2 − l + 2(n− 1)

where Hn = ∑n
k=1(1/k) is the n-th harmonic number.

The number l is integer, but the expression is bounded by the maximum at-

2We are grateful to Varun Dubey for suggesting this proof in:
http://math.stackexchange.com/q/1609071/29780
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tained when l is allowed to be real. By standard calculus we get that the real value

of l which maximizes the above expression is l =
√

2(n− 1) + (Hn + 1)(Hn + 2)−
(Hn + 1) = Θ(

√
n). Substituting into the above inequality gives:

NUM
DEN

≤ Θ(n1/2)

Θ(n)
= Θ(n−1/2) =⇒ U

W
< 4n · NUM

DEN
= O(n1/2)

as claimed.

The second part of Theorem 5.8 — regarding the Nash price — is proved by

the following:

Lemma 5.6.2. Let Z be a Nash-optimal rectangular division of a cake C among n agents

who value the entire cake C as 1. Let U be the Nash welfare of Z (the geometric mean of

the values):

Un =
n

∏
j=1

Vj(Zj)

Then, there exists a (1/4)-proportional rectangular allocation of C to these same n agents

with Nash welfare W, and U/W < 11.2.

Proof. Apply the redivision protocol of Section 5.5 to redivide the existing n pieces

among the n agents. Renumber the agents as in Lemma 5.6.1. The Nash welfare

of the new division, raised to the n-th power, can be bounded as:

Wn >
n−1

∏
k=0

max(
k ·Vk(Zk)

2n
,

1
4n

) ≥ (
1

4n
)n

n−1

∏
k=0

max(k ·Vk(Zk), 1)

and the ratio of the new welfare to the previous welfare can be bounded as:

Un

Wn < (4n)n · ∏n−1
k=0 Vk(Zk)

∏n−1
k=0 max(kVk(Zk), 1)

=
(4n)n

∏n−1
k=0 max(k, 1/Vk(Zk))

The nominator does not depend on the valuations, so the ratio is maximized

when the denominator is minimized. This happens when each factor in the prod-

uct is minimized. The minimal value of the 0-th factor is 1 and the minimal value
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of the other factors is k. Hence:

Un

Wn <
(4n)n

∏n−1
k=1 k

=
(4n)n

(n− 1)!
=

n(4n)n

n!
≈ n(4n)n
√

2πn(n/e)n
=

√
n

2π
· (4e)n

where e is the base of the natural logarithm. Taking the n-th root gives U/W <

(4e) ·
√

n/2π
1/n

. A calculation in Wolfram Alpha shows that the rightmost term
√

n/2π
1/n

is bounded globally by 1.03, so all in all U/W < 1.03 · 4 · e < 11.2 as

claimed.

5.7 Conclusions and Future Work

Two-dimensional division , the price-of-fairness and the re-division problem are

relatively new topics, and there is a lot of room for future research in each of

them.

5.7.1 Handling other geometric constraints

Two steps in our redivision algorithm are sensitive to the geometric constraint:

the allocation-completion algorithm (Step #1 in Theorem 5.2), and the Even–Paz pro-

tocol (Step #4 in Lemma 5.4.2). We describe how these steps are affected by several

alternative constraints.

1. Convexity in three or more dimensions. The Even–Paz protocol can eas-

ily operate on a multi-dimensional convex object, requiring the agents to cut us-

ing hyper-planes parallel to each other. However, we currently do not have an

allocation-completion algorithm for convex objects (or even for boxes) in three or

more dimensions.

2. Path-connectivity in two dimensions. If the pieces have to be path-connected

but not necessarily convex, then the allocation-completion step is much easier

and no blanks are created (Akopian and Segal-Halevi, 2016). However, it is not

clear how to use the Even–Paz protocol in this case: when the cake is connected

but not convex, making parallel cuts might create disconnected pieces.
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3. Fatness. A fat object is an object with a bounded length/width ratio, such

as a square. Fatness makes sense in land division: if you are entitled to a 900

square meters of land, you will probably prefer to get them as a 30× 30 square

or a 45 × 20 rectangle rather than 9000 × 0.1 sliver. A division problem with

fatness requirement cannot be reduced to one-dimensional division. There exist

specialized division protocols that support fatness constraints Segal-Halevi et al.

(2015a,c) and they can be used instead of the Even–Paz protocol. However, we

do not have an allocation-completion algorithm with fatness constraints.

4. Two pieces per agent. Theorem 5.1 allows an unlimited number of pieces

per agent, while the other theorems allow only a single piece per agent. We do

not know what happens between these two extremes. For example, if the cake

is a one-dimensional interval and each agent can get at most two intervals, what

ownership-proportionality combinations are attainable?

5.7.2 Handling other fairness requirements

1. Envy-freeness. In this paper we took proportionality as a benchmark of fair-

ness. An alternative benchmark is envy-freeness. Envy-freeness means that each

agent values its piece at least as much as each of the other pieces. Similarly, r-

envy-freeness means that each agent values its piece as at least r times the value

of each of the other pieces. For what pairs r, w is r-envy-freeness compatible with

w-ownership? With democratic-ownership?

2. Pareto-efficiency. From an existential point of view, Pareto-efficiency does

not add much difficulty. Both r-proportionality and w-ownership are preserved

by Pareto-improvements. therefore, if there exists a division satisfying r-proportionality

and w-ownership (or democratic-ownership), then there also exists a Pareto-optimal

division satisfying these properties. However, the algorithmic task of finding

such a division is not yet solved.
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5.7.3 Improving the constants

Our redivision protocol is 1/3 or 1/4 or 1/5-proportional (depending on the ge-

ometric constraint). We see two potential ways to improve these numbers.

1. In Step #2 of our redivision protocol, we add n helper agents, so the total

number of agents is 2n. However, in the Step #3, each agent chooses either its

helper or its normal agent, while the other agent is “wasted”. If we could know

the n choices of the agents in advance, we could employ only n agents overall

and this would subtract 1 from the constant (the constants would become 1/2

or 1/3 or 1/4). One way to analyze this scenario is to define a strategic game in

which each agent has two possible strategies: “normal” vs. “helper”. A pure-

strategy Nash equilibrium in this game corresponds to an allocation satisfying

the partial-proportionality and the democratic-ownership requirements. We con-

jecture that a pure-strategy Nash equilibrium indeed exists. While finding a Nash

equilibrium is usually a computationally-hard problem, it may be useful as an ex-

istential result.

2. In Lemma 5.4.2, we treat each existing piece Zj as an ”island” and insist that

each new piece be entirely contained in an existing piece, i.e, we do not cross

the existing division lines. This may be desirable in the context of land division,

since it respects the Uti Possidetis principle (Lalonde, 2002). However, it implies

that the resulting division can only be partially-proportional and never fully pro-

portional (as shown by the remark following Lemma 5.4.2). It may be possible

to improve the proportionality guarantees by devising a different redivision pro-

cedure that does cross the existing division lines. This may require some new

geometric techniques.

These possibilities invoke the following open question: what is the highest

level of proportionality that is compatible with democratic-ownership?

5.7.4 Price-of-fairness

It is not clear whether the upper bounds of our Theorems 5.6-5.9 are tight.
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In particular, for the case of interval cake and interval pieces, there is a lower

bound of Ω(
√

n) on the utilitarian price of proportionality. However, we could

not generalize it to the price of partial proportionality, and it is interesting to know

which of the following two options is correct: (a) there is a lower bound of Ω(
√

n)

matching our Theorem 5.7, or (b) the actual price of partial-proportionality is

o(
√

n). The latter option would imply that partial-proportionality is asymptoti-

cally ”cheaper” than full proportionality, in social welfare terms.

Regarding the Nash price-of-fairness, it is known (Sziklai and Segal-Halevi,

2015) that with arbitrary pieces, every Nash-optimal allocation is envy-free (hence

also proportional), so the Nash price of envy-freeness (hence, of proportionality)

is 1. However, this is not true when the pieces must be connected. We do not

have a lower bound for this case.
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Chapter 5 Appendix

5.A Fair Division of a Rectilinear Polygon

This appendix shows what proportionality guarantees are possible when the cake

is a rectilinear polygon, the pieces have to be rectangles (parallel to the sides of

the cake), and there are no ownership requirements. It can be seen as a baseline

for Theorem 5.5.

Lemma 5.A.1. Let C be a rectilinear polygon with T reflex vertexes. It is possible to

divide C among n agents such that the value of each agent is at least 1/(n + T) of the

total cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥
Vi(C)
n + T

The fraction 1/(n + T) is the largest that can be guaranteed.

Proof. A rectilinear polygon with T reflex vertexes can be partitioned in time

O(poly(T)) to at most T + 1 rectangles (Keil, 2000; Eppstein, 2010). Denote these

rectangles by Zj, so that:

C = Z1 ∪ · · · ∪ ZT+1

Apply the archipelago-division protocol of Lemma 5.4.2 with m = T + 1. The

value-guarantee per agent is at least 1/(n + m− 1) which is at least 1/(n + T), as

claimed.

For the upper bound, consider a staircase-shaped cake with T + 1 stairs. as

illustrated below (for T = 4):

All agents have the same value-measure, which is concentrated in the diamond-

shapes: the top diamond is worth n and each of the other diamonds is worth 1
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(so for all agents, the total cake value is n + T).

Any rectangle in C can touch at most a single diamond. There are two cases:

(a) All n agents touch the top diamond. Then, their total value is n and at least

one of them must receive a value of at most 1.

(b) At least one agent touches one of the T bottom diamonds. Then, the value

of that agent is at most 1.

In any case, at least one agent receives at most a fraction 1/(n + T) of the total

cake value, as claimed.
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6.1 Introduction

In most fair division problems, the resource is divided among individual agents,

and the fairness of a division is assessed based on the valuation of each agent.

However, in real life, goods are often owned and used by groups. As an example,

consider a land-estate inherited by k families, or a nature reserve that has to be

divided among k states. The land should be divided to k pieces, one piece per

group. Each group’s share is then used by all members of the group simultane-

ously. The land-plot allotted to a family is inhabited by the entire family. The

share of the nature-reserve alloted to a state becomes a national park open to all

citizens of that state. In economic terms, the alloted piece becomes a ”club good”

(Buchanan, 1965). The happiness of each group member depends on his/her val-

uation of the entire share of the group. But, in each group there are different

people with different valuations. The same division can be considered propor-

tional by some family members and not proportional by other members of the

same family. The main question in this chapter is:

How should we assess the fairness of a division among families?

6.1.1 Results

One option that comes to mind is to aggregate the valuations in each family to

a single family valuation (also known as: collective welfare function). Following the

utilitarian tradition (Bentham, 1789), the family-valuation can be defined as the

sum or (equivalently) the arithmetic average of the valuations of all family mem-

bers. We call a division average-proportional if every family receives a share with

an average value (averaged over all family members) of at least 1/k of its average

value of the entire cake. This definition makes the family-division problem easy,
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since each family can be regarded as a single agent, so the problem reduces to fair

division among k agents. Classic results (Steinhaus, 1948) imply that an average-

proportional division always exists (Section 6.3).

The problem with average-proportionality is that it makes sense only when

the numeric values of the agents’ valuations are meaningful and they are all mea-

sured in the same units, e.g. in dollars (see chapter 3 of Moulin (2004) for some

real-life examples of such situations). However, if the valuations represent indi-

vidual happiness measures that cannot be put on a common scale, then their sum

is meaningless, and other fairness criteria should be used.

A second option is to require that all members of every family agree that the

division is fair. We call a division unanimous-proportional if every agent values

his/her family’s share as at least 1/k of the total value. The advantage of this

definition is that it does not need to assume that all valuations share a common

scale. A unanimous-proportional division always exists (Section 6.4).

A disadvantage of unanimous-proportionality, compared to average-propor-

tionality, is that unanimous-proportional divisions might be highly fractioned.

As an illustration, if the cake is an interval, then there always exists an aver-

age-proportional division in which each family receives an interval. However, a

unanimous-proportional division in which each family receives an interval might

not exist, and moreover, in all unanimous-proportional divisions, the total num-

ber of intervals might have to be at least n - the number of agents (Section 6.4).

When the number of agents is large, as in the case of dividing land between states,

such divisions might be impractical.

In democratic societies, decisions are almost never accepted unanimously. In

fact, when the number of citizens is large, it may be impossible to attain unanim-

ity on even the most trivial issue. The simplest decision rule in such societies is

the majority rule. Inspired by this rule, we suggest a third fairness criterion. We

call a division democratic-proportional if at least half the citizens in each family

value their family’s share as at least 1/k. This definition can be justified accord-

ing to the following process. After a division is proposed, each group conducts

a referendum in which each citizen approves the division if he/she feels that the

division is proportional. The division is implemented only if, in every group,
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at least half of its members approve it. The democratic-proportionality criterion

combines some advantages of the other two criteria. It is similar to unanimous-

proportionality in that it does not need to assume that all valuations share a com-

mon scale. When there are k = 2 families with equal rights, it is similar to aver-

age-proportionality in that it can be satisfied with connected pieces - there always

exists a democratic-proportional division in which each family receives a single

connected piece. An additional advantage of democratic-proportionality in this

case is that it can be found by an efficient division protocol (Section 6.5). 1

The present paper compares the three fairness criteria in different settings: the

number of families can be two or more than two, and the entitlements of the fam-

ilies can be equal or different. In the common case when there are two families

with equal entitlements, democratic-proportionality is apparently the most prac-

tical criterion, since it guarantees the existence of connected divisions without

assuming a common utility scale. Although democratic-fairness might leave up

to half the citizens unhappy, this may be unavoidable in real-life situations. This

adds an aspect to Winston Churchil’s dictum: “democracy is the worst form of

government, except all the others that have been tried”.

6.1.2 Related Work

Group-envy-freeness and on-the-fly coalitions

Berliant et al. (1992); Hüsseinov (2011) study the concept of group-envy-free cake-

cutting. Their model is the standard cake-cutting model in which the cake is

divided among individuals (and not among families as in our model). They define

a group-envy-free division as a division in which no coalition of individuals can

take the pieces allocated to another coalition with the same number of individuals

and re-divide the pieces among its members such that all members are weakly

better-off. Coalitions are also studied by Dall’Aglio et al. (2009); Dall’Aglio and

Di Luca (2012).

In our setting, the families are pre-determined and the agents do not form

1In contrast, average-proportional and unanimous-proportional allocations cannot be found
by any finite protocol. We omit the details here since the present chapter focuses on existence
rather than computational efficiency. More details can be found in Segal-Halevi and Nitzan (2016).
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coalitions on-the-fly. In an alternative model, in which agents are allowed to form

coalitions based on their preferences, the family-cake-cutting problem becomes

easier. For instance, it is easy to achieve a unanimous-proportional division with

connected pieces between two coalitions: ask each agent to mark its median line,

find the median of all medians, then divide the agents to two coalitions according

to whether their median line is to the left or to the right of the median-of-medians.

Fair division with public goods

In our setting, the piece given to each family is considered a ”public good” in

this specific family. The existence of fair allocations of homogeneous goods when

some of the goods are public has been studied e.g. by Diamantaras (1992); Dia-

mantaras and Wilkie (1994, 1996); Guth and Kliemt (2002). In these studies, each

good is either private (consumed by a single agent) or public (consumed by all

agents). In the present paper, each piece of land is consumed by all agents in a

single family - a situation not captured by existing public-good models.

Family preferences in matching markets

Besides land division, family preferences are important in matching markets, too.

For example, when matching doctors to hospitals, usually a husband and a wife

who are both doctors want to be matched to the same hospital. This issue poses

a substantial challenge to stable-matching mechanisms (Klaus and Klijn, 2005,

2007; Kojima et al., 2013; Ashlagi et al., 2014).

Fairness in group decisions

The notion of fairness between groups has been studied empirically in the con-

text of the well-known ultimatum game. In the standard version of this game, an

individual agent (the proposer) suggests a division of a sum of money to another

individual (the responder), which can either approve or reject it. In the group

version, either the proposer or the responder or both are groups of agents. The

groups have to decide together what division to propose and whether to accept a

proposed division.
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Experiments by Robert and Carnevale (1997); Bornstein and Yaniv (1998) show

that, in general, groups tend to act more rationally by proposing and accepting

divisions which are less fair. Messick et al. (1997) studies the effect of differ-

ent group-decision rules while Santos et al. (2015) uses a threshold decision rule

which is a generalized version of our majority rule (an allocation is accepted if at

least M agents in the responder group vote to accept it).

These studies are only tangentially relevant to the present paper, since they

deal with a much simpler division problem in which the divided good is homoge-

neous (money) rather than heterogeneous (cake/land).

Non-additive utilities

As explained in Sections 6.4 and 6.5, the difficulty with unanimous-proportion-

ality and democratic-proportionality is that the associated family-valuation func-

tions are not additive. In the previous chapters we encountered value-functions

that are not additive because of the geometry; here, the value-functions are not

additive because of the family constraints. See subsection 4.1.2 on page 107 for

related work.

6.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal defini-

tions).

• C is the cake to be divided. In this chapter we return to the one-dimensional

model and assume that C is an interval in R.

• n is the number of agents participating in the division. In this chapter, n is

the total number of agents in all families together.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece

Xi. In this chapter we adapt the normalization assumption common in the

cake-cutting literature, and assume that ∀i : Vi(∅) = 0, Vi(C) = 1.
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6.2.1 Families and entitlements

There are k families, denoted by Fj, j ∈ {1, ..., k}.
The number of agents in Fj is nj. Each agent is a member of exactly one family,

so n = ∑k
j=1 nj.

For each family j, there is a positive weight wj representing the entitlement of

this family. The sum of all weights is one: ∑k
j=1 wj = 1.

In the simplest setting, the families have equal entitlements, i.e, for each j ∈
{1, . . . , k}: wj = 1/k. Equal entitlements make sense, for example, when k mar-

ried siblings inherit their parents’ estate. While an heir will probably like to take

his family’s preferences into account when selecting a share, each heir is entitled

to 1/k of the estate regardless of the size of his/her family.

In general, each family may have a different entitlement. The entitlement of a

family may depend on its size but may also depend on other factors. For example,

when two states jointly discover a new island, they will probably want to divide

the island between them in proportion to their investment and not in proportion

their population.

6.2.2 Allocations and components

An allocation is a vector of k pieces, X = (X1, . . . , Xk), one piece per family, such

that the Xj are pairwise-disjoint and ∪jXj = C.

Each piece is a finite union of intervals. We denote by Comp(Xj) the number

of connected components (intervals) in the piece Xj, and by Comp(X) the total

number of components in the allocation X, i.e:

Comp(X) =
k

∑
j=1

Comp(Xj)

Ideally, we would like that each piece be connected, i.e, ∀i : Comp(Xi) = 1 and

Comp(X) = k. This requirement is especially meaningful when the divided re-

source is land, since a contiguous piece of land is much easier to use than a col-

lection of disconnected patches.

However, a division with connected pieces is not always possible. Several
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countries have a disconnected territory. A striking example is the India-Bangladesh

border. According to Wikipedia,2 “Within the main body of Bangladesh were

102 enclaves of Indian territory, which in turn contained 21 Bangladeshi counter-

enclaves, one of which contained an Indian counter-counter-enclave... within

the Indian mainland were 71 Bangladeshi enclaves, containing 3 Indian counter-

enclaves”. Another example is Baarle-Hertog - a Belgian municipality made of 24

separate parcels of land, most of which are exclaves in the Netherlands.3

In case a division with connected pieces is not possible, it is still desirable

that the number of connectivity components - Comp(X) - be as small as possible.

This is a common requirement in the cake-cutting literature. When the cake is

an interval, the components are sub-intervals and their number is one plus the

number of cuts. Hence, the number of components is minimized by minimizing

the number of cuts (Robertson and Webb, 1995; Webb, 1997; Shishido and Zeng,

1999; Barbanel and Brams, 2004, 2014). In a realistic, 3-dimensional world, the

additional dimensions can be used to connect the components, e.g, by bridges

or tunnels. Still, it is desirable to minimize the number of components in the

original division in order to reduce the number of required bridges/tunnels. The

goal of minimizing the number of components is also pursued in real-life politics.

Going back to India and Bangladesh, after many years of negotiations they finally

started to exchange most of their enclaves during the years 2015–2016. This is

expected to reduce the number of components from 200 to a more reasonable

number.

6.2.3 Three fairness criteria

To define the criterion of average-proportionality, consider the following family-

valuation functions:

Wavg
j (Xj) =

∑i∈Fj
Vi(Xj)

nj
for j ∈ {1, ..., k}.

2Wikipedia page “India–Bangladesh enclaves”.
3Wikipedia page “Baarle-Hertog”. Many other examples are listed in Wikipedia page “List of

enclaves and exclaves”. We are grateful to Ian Turton for the references.
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An allocation X is called average-proportional if

∀j ∈ {1, . . . , k} : Wavg
j (Xj) ≥ wj

An allocation X is called unanimous-proportional if:

∀j ∈ {1, . . . , k} : ∀i ∈ Fj : Vi(Xj) ≥ wj

An allocation X is called democratic-proportional if for all j ∈ {1, . . . , k}, for at

least half the members i ∈ Fj:

Vi(Xj) ≥ wj

where wj is the entitlement of family j.

Of these three fairness criteria, unanimous-proportionality is clearly the strongest:

it implies both average-proportionality and democratic-proportionality. The other

two definitions do not imply each other, as shown in the following example.

Consider a land-estate consisting of four districts. It has to be divided between

two families: (1) {Alice,Bob,Charlie} and (2) {David,Eva,Frankie}. The families

have equal entitlements, i.e, w1 = w2 = 1/2. Each member’s valuation of each

district is shown in the table below:

Alice 60 30 3 3

Bob 50 40 3 3

Charlie 10 80 3 3

David 3 3 60 30

Eva 3 3 60 30

Frankie 3 3 0 90

Note that the value of the entire land is 96 according to all agents, so proportion-

ality implies that each family should get at least 48.

If the two leftmost districts are given to family 1 and the two rightmost dis-

tricts are given to family 2, then the division is unanimous-proportional, since each

member of each family feels that his family’s share is worth 90. This division is

also, of course, average-proportional and democratic-proportional.

193



If only the single leftmost district is given to family 1 and the other three dis-

tricts are given to family 2, then the division is still democratic-proportional, since

Alice and Bob feel that their family received more than 48. However, Charlie feels

that his family received only 10, so the division is not unanimous-proportional.

Moreover, the division is not average-proportional since the average valuation of

family 1 is only (60+50+10)/3=40.

If the three leftmost districts are given to family 1 and only the rightmost dis-

trict is given to family 2, then the division is average-proportional, since family 2’s

average valuation of its share is (30+30+90)/3=50. However, it is not unanimous-

proportional and not even democratic-proportional, since David and Eva feel that

their share is worth only 30.

A property of cake partitions is called feasible if for every k families and n

agents there exists an allocation satisfying this property. Otherwise, the property

is called infeasible. In the following sections we study the feasibility of the three

fairness criteria in turn.

6.3 Average fairness

Given any n additive value functions Vi, the k family-valuations Wavg
j defined

above are also additive. Therefore, the family cake-cutting problem can be re-

duced to the classic problem of cake-cutting among individuals: there are k in-

dividual agents, indexed by j ∈ {1, . . . , k}, and the valuation of agent j is the

additive value measure Wavg
j . This implies the following easy positive result:

Theorem 6.3.1. When families have equal entitlements, average-proportionality with

connected pieces is feasible.

Proof. This follows from classic results proving the existence of connected pro-

portional allocations for individual agents (Steinhaus, 1948; Even and Paz, 1984).

The situation is more difficult with different entitlements, as shown by the

following negative result.
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Theorem 6.3.2. When families have different entitlements, average-proportionality with

connected pieces may be infeasible. Moreover, at least 2k− 1 components may be required

to attain an average-proportional allocation.

Proof. Suppose there are k families, the entitlement of family 1 is k2

k2+k−1 and the

entitlement of each of the the other families is 1
k2+k−1 . The cake consists of 2k− 1

districts and the average family valuations in these districts are:

Family 1 1 0 1 0 1 0 1 ... 1 0 1

Family 2 0 1 0 0 0 0 0 ... 0 0 0

Family 3 0 0 0 1 0 0 0 ... 0 0 0

Family 4 0 0 0 0 0 1 0 ... 0 0 0

... ...

Family k 0 0 0 0 0 0 0 ... 0 1 0

Family 1 must receive more than (k− 1)/k of the cake, so it must receive a posi-

tive slice of each of its k positive districts. But, it cannot receive a single interval

that touches two of its positive districts, since such an interval will leave one of

the other families with zero value. Therefore, family 1 must receive at least k

components. Each of the other families must receive one component, so the total

number of components is at least 2k− 1.

We do not know if the lower bound of 2k − 1 is tight even for individual

agents.4 Interestingly, our results on unanimous-proportional division with dif-

ferent entitlements can be used to attain a non-trivial upper bound on the number

of cuts required for dividing a cake among k individuals with different entitle-

ments.

Lemma 6.3.3. Given k agents with different entitlements, a proportional division with

dlog2 ke · (2k− 2) + 1 components is feasible.

Proof. In Theorem 6.4.7 we will prove that, given n agents in k families with differ-

ent entitlements, a unanimous-proportional division with dlog2 ke · (2n− 2) + 1

components is feasible. Now, suppose each family has a single member and let

n = k.
4McAvaney et al. (1992); Robertson and Webb (1997, 1998) discuss the computational aspect

of this question - how many intermediate ”cut” marks are required (mainly for two agents). But
they do not discuss the existential question of how many cuts are needed in the final division.
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This immediately implies the same upper bound for average-proportionality:

Theorem 6.3.4. Given k families with different entitlements, an average-proportional

division with dlog2 ke · (2k− 2) + 1 components is feasible.

This matches the lower bound of 2k− 1 for k = 2 families, but leaves a gap for

k ≥ 3 families.

6.4 Unanimous fairness

Before presenting our results, we note that unanimous-proportionality, like aver-

age-proportionality, can also be defined using family-valuation functions. Define:

Wmin
j (Xj) := min

i∈Fj
Vi(Xj) for j ∈ {1, ..., k}.

Then, a division is unanimous-proportional if-and-only-if:

∀j : Wmin
j (Xj) ≥ wj

However, in contrast to the functions Wavg defined in Section 6.3, the functions

Wmin are in general not additive. For example, consider a cake with three districts

and a family with the following valuations:

C1 C2 C3 C1 ∪ C2 ∪ C3

Alice 1 1 1 3 = 1 + 1 + 1

Bob 0 2 1 3 = 0 + 2 + 1

Charlie 0 1 2 3 = 0 + 1 + 2

Wmin 0 1 1 3 > 0 + 1 + 1

While the individual valuations are additive, Wmin is not additive (it is not even

subadditive). Therefore, the classic cake-cutting results on proportional cake-

cutting cannot be used, and different techniques are needed.

6.4.1 Exact division

Initially, we assume that the entitlements are equal, i.e: wj = 1/k for all j. We

relate unanimous-proportionality to a classic cake-cutting problem of finding an
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exact division:

Definition 6.4.1. Exact(N, K) is the following problem. Given N agents and an

integer K, find a division of the cake to K pieces, such that each of the N agents

assigns exactly the same value to all pieces:

∀j = 1, ..., K : ∀i = 1, ..., N : Vi(Xj) = 1/K.

Exact division is a difficult problem, since it requires all agents to agree on

the values of all pieces, not only their own piece. In this section we prove that

finding a unanimous-proportional division is similarly difficult: we show a two-

way reduction between the problem of unanimous-proportional division and the

problem of exact division.

Denote by UnanimousProp(n, k) the problem of finding a unanimous-propor-

tional division when there are n agents grouped in k families with equal entitle-

ments.

6.4.2 UnanimousProp =⇒ Exact

Lemma 6.4.2. For every pair of integers N ≥ 1, K ≥ 1, a solution to UnanimousProp

(N(K− 1) + 1, K) implies a solution to Exact (N, K).

Proof. Given an instance of Exact(N, K) (N agents and a number K of required

pieces), create K families. Each of the first K − 1 families contains N agents with

the same valuations as the given N agents. The K-th family contains a single

agent whose valuation is the average of the N given valuations:

V∗ =
1
N

N

∑
i=1

Vi.

The total number of agents in all K families is N(K− 1) + 1. Use Unanimous-

Prop (N(K − 1) + 1, K) to find a unanimous-proportional division, X. For each

agent i in family j: Vi(Xj) ≥ 1/K.

By construction, each of the first K− 1 families has an agent with valuation Vi.

Hence, all N agents value each of the first K− 1 pieces as at least 1/K and:
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∀i = 1, ..., N :
K−1

∑
j=1

Vi(Xj) ≥
K− 1

K
.

Hence, by additivity, every agent values the K-th piece as at most 1/K:

∀i = 1, ..., N : Vi(XK) ≤ 1/K.

The piece XK is given to the agent with value measure V∗, so by proportionality:

V∗(XK) ≥ 1/K. By construction, V∗(XK) is the average of the Vi(XK). Hence:

∀i = 1, ..., N : Vi(XK) = 1/K.

Again by additivity:

∀i = 1, ..., N :
K−1

∑
j=1

Vi(Xj) =
K− 1

K
.

Hence, necessarily:

∀i = 1, ..., N, ∀j = 1, ..., K− 1 : Vi(Xj) = 1/K.

So we have found an exact division and solved Exact(N, K) as required.

Alon (1987) proved that for every N and K, an Exact(N, K) division might

require at least N(K− 1) + 1 components. Combining this result with the above

lemma implies the following negative result:

Theorem 6.4.3. For every N, K, let n = N(K − 1) + 1. A unanimous-proportional

division for n agents in K families might require at least n components.

This implies that, in particular, unanimous-proportionality with connected

pieces is infeasible.

6.4.3 Exact =⇒ UnanimousProp

Lemma 6.4.4. For each n, k, a solution to Exact (n− 1, k) implies a solution to Unani-

mousProp (n, k) for any grouping of the n agents to k families.
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Proof. Suppose we are given an instance of UnanimousProp(n, k), i.e, n agents in

k families. Select n− 1 agents arbitrarily. Use Exact(n− 1, k) to find a partition of

the cake to k pieces, such that each of the n− 1 agents values each of these pieces

as exactly 1/k. Ask the n-th agent to choose a favorite piece; by the pigeonhole

principle, this value is worth at least 1/k for that agent. Give that piece to the

family of the n-th agent. Give the other k− 1 pieces arbitrarily to the remaining

k− 1 families. The resulting division is unanimous-proportional.

Alon (1987) proved that for every N and K, Exact(N, K) has a solution with at

most N(K − 1) + 1 components (at most N(K − 1) cuts). Combining this result

with the above lemma implies the following positive result:

Theorem 6.4.5. Given n agents in k families with equal entitlements, a unanimous-

proportional division with (n− 1) · (k− 1) + 1 components is feasible.

For k = 2 families, the positive result of Theorem 6.4.5 is n, which matches the

lower bound of Theorem 6.4.3.

For k > 2 families, the number of components can be made smaller, as ex-

plained in the following subsections.

6.4.4 Less components: equal entitlements

We start with an example. Assume there are k = 4 families. By Theorem 6.4.5,

using 3(n − 1) cuts, the cake can be divided to 4 subsets which are considered

equal by all n members. But for a unanimous-proportional division, it is not

required that all members think that all pieces are equal, it is only required that

all members believe that their family’s share is worth at least 1/4. This can be

achieved as follows:

• Divide the cake to two subsets which all n agents value as exactly 1/2. This

is equivalent to solving Exact(n, 2), which by Alon (1987), can be done with

at most n cuts. Call the two resulting subsets West and East.

• Assign arbitrary two families to West and the other two families to East.

Mark by nW the total number of members in the families assigned to West

and by nE the total number of members assigned to East.
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• Divide the West to two pieces which all nW agents value as exactly 1/4; this

can be done with nW cuts. Give a piece to each family. Divide the East

similarly using nE cuts.

The first step requires n cuts and the second step requires nW + nE = n cuts too.

Hence the total number of cuts required is only 2n, rather than 3n− 1.

In fact, two cuts can be saved in each step by excluding two members (from

two different families) from the exact division. These members will not think that

the division is equal, but they will be allowed to choose the favorite piece for their

family. Thus only 2(n− 2) cuts are required. A simple inductive argument shows

that whenever k is a power of 2, (log2 k) · (n− k/2) cuts are required.

When k is not a power of 2, a result by Stromquist and Woodall (1985) can be

used. They prove that, for every fraction r ∈ [0, 1], it is possible to cut a piece of

cake such that all n agents agree that its value is exactly r using at most 2n − 2

cuts.5 This can be used as follows:

• Select integers l1, l2 ∈ {1, ..., k− 1} such that l1 + l2 = k.

• Apply Stromquist and Woodall (1985) with r = l1/k: using 2n− 4 cuts, cut

a piece X1 that n − 1 agents value as exactly l1/k. This means that these

n− 1 agents value the other piece, X2, as exactly l2/k.

• Let the n-th agent choose a piece for his family; assign the other families

arbitrarily such that l1 families are assigned to piece X1 and the other l2

families to piece X2.

• Recursively divide piece X1 to its l1 families and piece X2 to its l2 families.

After a finite number of recursion steps, the number of families assigned to each

piece becomes 1 and the procedure ends. The number of cuts in each level of the

recursion is at most (2n− 4). The depth of recursion can be bounded by dlog2 ke
by dividing k to halves (if it is even) or to almost-halves (if it is odd; i.e. take

l1 = (k− 1)/2 and l2 = (k + 1)/2). Hence:

5They prove that, if the cake is a circle, the number of connected components is n− 1. Hence,
the number of cuts is 2n− 2. This is also true when the cake is an interval, although the number
of connected components in this case is n.
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Theorem 6.4.6. Given n agents in k families with equal entitlements, a unanimous-

proportional division with dlog2 ke · (2n− 4) + 1 components is feasible.

Note that Theorem 6.4.5 and Theorem 6.4.6 both give upper bounds on the

number of components required for unanimous-proportionality. The bound of

Theorem 6.4.5 is stronger when k is small and the bound of Theorem 6.4.6 is

stronger when k is large.

6.4.5 Less components: different entitlements

When the families have different entitlements, the procedure of the previous sub-

section cannot be used. We cannot let the n-th agent select a piece for his family,

since the pieces are different. For example, suppose there are two families with

entitlements w1 = 1/3, w2 = 2/3. We can divide the cake to two pieces X1, X2

such that n− 1 agents value X1 as 1/3 and X2 as 2/3. So all of them agree that

X1 should be given to family 1 and X2 should be given to family 2. But, the n-

th agent might select the wrong piece for his family. Therefore, the procedure

should be modified as follows.

• Select an integer l ∈ {1, ..., k}.

• Divide the families to two subsets: F1, . . . , Fl and Fl+1, . . . , Fk.

• Apply Stromquist and Woodall (1985) with r = ∑l
j=1 wj: using 2n− 2 cuts,

cut a piece X1 which all n agents value as exactly ∑l
j=1 wj. This means that

all n agents value the other piece, X2, as exactly ∑k
j=l+1 wj.

• Recursively divide piece X1 to F1, . . . , Fl and piece X2 to Fl+1, . . . , Fk.

Here, the number of cuts in each level of the recursion is at most (2n− 2). The

depth of recursion can be bounded by dlog2 ke by choosing l = k/2 (if k is even)

or l = (k− 1)/2 (if k is odd). Hence:

Theorem 6.4.7. Given n agents in k families with different entitlements, a unanimous-

proportional division with dlog2 ke · (2n− 2) + 1 components is feasible.
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In concluding the analysis of unanimous-proportionality, recall that, even for

k = 2 families, unanimous-proportionality is as difficult as exact division and

might require the same number of components - n. In the worst case, we might

need to give a disjoint component to each member, which negates the concept

of division to families. Therefore we now turn to the analysis of an alternative

fairness criterion that yields more useful results.

6.5 Democratic fairness

Like unanimous-proportionality (Section 6.4), democratic-proportionality can also

be defined using family-valuation functions. Define:

Wmed
j (Xj) :=

mediani∈FjVi(Xj)

nj
for j ∈ {1, ..., k}.

A division is democratic-proportional if-and-only-if:

∀j : Wmed
j (Xj) ≥ wj

However, the Wmed functions are not additive,6 so classic cake-cutting results can-

not be used.

6.5.1 Two families: a division procedure

We start with a positive result for two families with equal entitlements, which

shows that democratic-proportionality is substantially easier than unanimous-

proportionality.

Theorem 6.5.1. When there are k = 2 families with equal entitlements, democratic-

proportionality with connected pieces is feasible.

Proof. Algorithm 1 finds a democratic-proportional division between two fami-

lies. For each family, a location Mj is calculated such that, if the cake is cut at Mj,

half the members value the interval [0, Mj] as at least 1/2 and the other half value

the interval [Mj, 1] as at least 1/2. Then, the cake is cut between the two family

6See the example in the beginning of Section 6.4. In that example Wmed is identical to Wmin.
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Algorithm 1 Finding a democratic-envy-free division for two families
INPUT:
- A cake, which is assumed to be the unit interval [0, 1].
- n additive agents, all of whom value the cake as 1.
- A grouping of the agents to 2 families, F1, F2.

OUTPUT:
A democratic-envy-free division of the cake to 2 pieces.

ALGORITHM:
- Each agent i = 1, ..., n marks an xi ∈ [0, 1] such that Vi([0, xi]) = Vi([xi, 1]) =
1/2.
- For each family j = 1, 2, find the median of its members’ marks: Mj =
mediani∈Fj xi. Find the median of the family medians: M∗ = (M1 + M2)/2.
- If M1 < M2 then give [0, M∗] to F1 and [M∗, 1] to F2.
Otherwise give [0, M∗] to F2 and [M∗, 1] to F1.

medians, and each family receives the piece containing its own median. By con-

struction, at least half the members in each family value their family’s share as at

least 1/2, so the division is democratic-envy-free. In contrast to the impossibil-

ity results of the previous sections, here each family receives a single connected

piece.

Unfortunately, this positive result is not applicable when there are more than

two families, as shown in the following subsection.

6.5.2 Three or more families: an impossibility result

Given a specific allocation of cake to families, define a zero agent as an agent

who values his family’s share as 0 and a positive agent as an agent who believes

his family received a share with a positive value. Note that positivity is a much

weaker requirement than proportionality.

Lemma 6.5.2. Assume there are n = mk agents, divided into k families with m members

in each family. To guarantee that at least q members in each family are positive, the total

number of components may need to be at least:

k · kq−m
k− 1

Proof. Number the families by j = 0, ..., k− 1 and the members in each family by
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i = 0, ..., m− 1. Assume that the cake is the interval [0, mk]. In each family j, each

member i wants only the following interval: (ik + j, ik + j + 1). Thus there is no

overlap between desired pieces of different members. The table below illustrates

the construction for k = 2, m = 3. The families are {Alice,Bob,Charlie} and

{David,Eva,Frankie}:

Alice 1 0 0 0 0 0

Bob 0 0 1 0 0 0

Charlie 0 0 0 0 1 0

David 0 1 0 0 0 0

Eva 0 0 0 1 0 0

Frankie 0 0 0 0 0 1

Suppose the piece Xj (the piece given to family j) is made of l ≥ 1 compo-

nents. We can make l members of Fj positive using l intervals of positive length

inside their desired areas. However, if q > l, we also have to make the remain-

ing q− l members positive. For this, we have to extend q− l intervals to length

k. Each such extension totally covers the desired area of one member in each of

the other families. Overall, each family creates q− l zero members in each of the

other families. The number of zero members in each family is thus (k− 1)(q− l).

Adding the q members which must be positive in each family, we get the follow-

ing necessary condition: (k− 1)(q− l) + q ≤ m. This is equivalent to:

l ≥ kq−m
k− 1

.

The total number of components is k · l, which is at least equal to the expression

stated in the Lemma.

In a unanimous-proportional division, all members in each family must be

positive. Taking q = m gives l ≥ m and the number of components is at least

km = n, which coincides with the bound of Theorem 6.4.3. In a democratic-

proportional division, at least half the members in each family must be positive.

Taking q = m/2 yields the following negative result:
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Theorem 6.5.3. In a democratic-proportional division with n agents grouped into k fam-

ilies, the number of components may need to be at least

n · k/2− 1
k− 1

Note that for k = 2 the lower bound is 0, and indeed we already saw that in

this case a connected allocation is feasible.

6.5.3 Three or more families: positive results

Suppose we do want a democratic-proportional division for three or more fami-

lies. How many components are sufficient?

As a first positive result, we can use Theorem 6.4.7, substituting n/2 instead of

n: select half of the members in each family arbitrarily, then find a division which

is unanimous-proportional for them while ignoring all other members. This leads

to:

Theorem 6.5.4. Given n agents in k families with different entitlements, democratic-

proportionality with dlog2 ke · (n− 2) + 1 components is feasible.

However, for families with equal entitlements we can do much better. Algo-

rithm 2 generalizes Algorithm 1: for any number of families.

The algorithm works in two steps.

Step 1: Halving. For each family, a location Mj is calculated such that, if the

cake is cut at Mj, half the family members value the interval [0, Mj] as at least
dk/2e

k and the other half value the interval [Mj, 1] as at least bk/2c
k . Then, the cake

is cut in M∗ - the median of the family medians. The dk/2e “western families”

- for which Mj ≤ M∗ - are assigned to the western interval of the cake - [0, M∗].

By construction, at least half the members in each of the western families value

[0, M∗] as at least dk/2e
k . We say that these members are “happy”. Similarly, the

bk/2c eastern families - for which Mj ≥ M∗ - are assigned to the eastern interval

(M∗, 1]; at least half the members in each of these families are “happy”, i.e, value

the interval (M∗, 1] as at least bk/2c
k .

If there are only two families (k = 2), then we are done: there is exactly one

western family and one eastern family (dk/2e = bk/2c = 1 ). For each family
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Algorithm 2 Finding a democratic-proportional division for k ≥ 2 families.
INPUT:
- A cake, which is assumed to be the unit interval [0, 1].
- n additive agents, all of whom value the cake as 1.
- A grouping of the agents to k families, F1, ..., Fk.

OUTPUT:
A democratic-proportional division of the cake to k pieces.

ALGORITHM:
- Each agent i = 1, ..., n selects an xi ∈ [0, 1] such that Vi([0, xi]) = dk/2e

k (this

means 1
2 if k is even and k+1

2k if k is odd). Note: Vi([xi, 1]) = bk/2c
k .

- For each family j = 1, ..., k, find the median of its members’ selections: Mj =
mediani∈Fj xi.
- Order the families in increasing order of their medians. Find the median of the
family-medians: M∗ = Mdk/2e. Cut the cake at x = M∗.
- Define the western families as the Fj with j = 1, ..., dk/2e. Let nW be the total num-
ber of members in these families. Divide the interval [0, M∗] among the western
families using UnanimousProp(nW/2, dk/2e).
- Similarly, define the eastern families as the Fj with j = dk/2e+ 1, ..., k. There are
bk/2c such families. Let nE be their total number of members. Divide the interval
(M∗, 1] among the eastern families using UnanimousProp(nE/2, bk/2c).

j ∈ {1, 2}, at least half the members of each family value their family’s share as at

least 1/2. Hence, the allocation of Xj to family j is democratic-proportional.

If there are more than two families (k > 2), an additional step is required.

Step 2: Sub-division. Each of the two sub-intervals should be further divided

to the families assigned to it. In each family Fj, at least nj/2 members are happy.

So for each Fj, select exactly nj/2 members who are happy. Our goal now is to

make sure that these agents remain happy. This can be done using a unanimous-

proportional allocation, where only nj/2 happy members in each family (hence

n/2 members overall) are counted. The unanimous-proportional allocation guar-

antees that every western-happy-member believes that his family’s share is worth

at least dk/2e
k · 1

dk/2e =
1
k . Similarly, every eastern-happy-member believes that his

family’s share is worth at least bk/2c
k · 1

bk/2c =
1
k . Hence, the resulting division is

democratic-proportional.

We now calculate the number of components in the resulting division. One cut

is required for the halving step. For the unanimous-proportional division of the

western interval, the number of required cuts is at most (dk/2e − 1) · (nW/2− 1)
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Proportionality #Families
(k)

#Connectivity Components
Lower Upper

Average (Sec. 6.3) k k k (connected)
Unanimous 2 n n

(Sec. 6.4) k n
min(1 + dlog2 ke · (2n− 4),

(k− 1) · (n− 1) + 1)
Democratic 2 2 2 (connected)

(Sec. 6.5) k n · k/2−1
k−1

min(2 + dlog2dk/2ee · (n− 8),
2 + (dk/2e − 1) · (n/2− 2))

Table 6.1: Summary of results for dividing a cake among families: upper and
lower bounds on number of cuts

by Theorem 6.4.5, and at most dlog2dk/2ee · (nW − 4) by Theorem 6.4.6. Similarly,

for the eastern interval the number of required cuts is at most the minimum of

(bk/2c − 1) · (nE/2− 1) and dlog2bk/2ce · (nE − 4). The total number of cuts is

thus at most 1 + (dk/2e − 1) · (n/2− 2) and at most 1 + dlog2dk/2ee · (n − 8).

The total number of components is larger by one. We obtain:

Theorem 6.5.5. Given n agents in k families with equal entitlements, democratic-pro-

portionality is feasible with at most

min
(

2 + (dk/2e − 1) · (n/2− 2) , 2 + dlog2dk/2ee · (n− 8)
)

components.

6.6 Conclusions and Future Work

Table 6.1 compares the three fairness criteria studied in the present paper, for

families with equal entitlements. Recall that n is the total number of agents in all

families.

The case of k = 2 families is well-understood. The results for all fairness

criteria are tight: by all fairness definitions, we know that a fair division exists

with the smallest possible number of connectivity components.

6.6.1 Open questions

The case of k > 2 families opens some questions:
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• Is unanimous-proportionality with n components feasible for all k? (partic-

ularly, with k = 3 families, is the number of required components n as in

the lower bound, or 2n− 1 as in the upper bound?).

• Is democratic-proportionality with n · k/2−1
k−1 components feasible for all k?

(particularly, with k = 3 families, is the number of required components

n/4 as in the lower bound, or n/2 as in the upper bound?).

The case of different entitlements is much less understood even for individual

agents. As far as we know, it is an open question whether cake-cutting among k

individuals with 2k− 1 components is feasible for k > 2. This has direct implica-

tions on the number of required components for average-proportionality.

6.6.2 Alternative fairness criteria

One could consider the following alternative fairness criterion: an allocation is

individually-proportional if the allocation X = (X1, . . . , Xk) admits a refinement

Y = (Y1, . . . , Yn), where for each family Fj, ∪i∈FjYi = Xj, such that for each agent

i, Vi(Yi) ≥ 1/n. Individually-proportional allocations always exist and can be

found by using any classic proportional cake-cutting procedure on the individ-

ual agents, disregarding their families. The number of components is at most n.

Individual-proportionality makes sense if, after the division of the land among

the families, each family intends to further divide its share among its members.

However, often this is not the case. When an inherited land-estate is divided

between two families, the members of each family intend to live and use their

entire share together, rather than dividing it among them. Therefore, the hap-

piness of each family member depends on the entire value of his family’s share,

rather than on the value of a potential private share he would get in a hypothetic

sub-division.

Instead of proportionality, it is possible to use envy-freeness as the basic fair-

ness criterion. Envy-freeness means that the valuation of each family in its share

should be at least as large as the valuation of the family in another share. Then,

average-envy-freeness means that the average value of each family in its allo-

cated share (averaged over all family members) is at least as large as its average
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value in each of the other shares; unanimous-envy-freeness means that every

agent values his family’s share at least as much as any other share; democratic-

envy-freeness means that at least half the members in each family believe that

their family received the best share. Note that this definition inherently assumes

that the families have equal entitlements. Section 6.3 (the equal-entitlements case)

holds as-is for average-envy-freeness. In Theorems 2 and 3, the recursive-halving

procedure cannot be used, and the number of components in the positive results

is O(nk) instead of O(n log k). More details are available in Segal-Halevi and

Nitzan (2016).

Finally, the combination of envy-freeness and Pareto-efficiency is very interesting,

regardless of geometric or computational constraints. Among individuals, an

envy-free and Pareto-efficient cake-division always exists (Weller, 1985). Does

there always exist an unanimous-envy-free and Pareto-efficient division among

families?

The latter question is open not only in the cake-cutting setting, but also in the

classic economic setting of dividing homogeneous resources.
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Hüsseinov, F. (2011). A theory of a heterogeneous divisible commodity exchange
economy. Journal of Mathematical Economics, 47(1):54–59.
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lkl .dpicn e` dgtyn :oebk ,miyp` ly dveawl zkiiy dnc`-zwlg lk miax mixw

oia dber zwelgl mikildz mibivn ep` ef dceara .zepey zetcrd opyi dveawa mc`

.dveawd ixag ly zepeyd zetcrdl miqgiiznd ,zeveaw

,mitqep miavna mb zeiyeniy zeidl zeieyr dberd zwelg lcenl zepeyd zeagxdd

zwelga zeiyeniy zeidl zeieyr zeixhne`ib zelabn :dnbecl .rwxw zwelgl hxt

ycgn dwelg .mibivn oia dkexrza mighy e` ,minqxtn oia miicnn-ec meqxt-ighy

miycg mikildzl aeygin-ia`yn wlgl yi mday ,opr-aeygin zekxrna mb zygxzn

`l` rwxwa wx `l yi zizgtyn zelra .miniiwd mikildza dribtd xerfin jez

xwgnl mexzl dieyr zigkepd dceard ,okl .dgtynl mikiiyd mixg` mia`yna mb

.zerwxw zwelg `yepa dxiyid dnexzl xarn ,illk ote`a zpbed dwelga

c



xzei ziyeniy `id zireaix rwxw mb .dlxitq zxeva rwxwn ceairle diipal xzei

.ipexwn enk jex`e xv oaln zxeva rwxwn

rlevn didz dberd ,llk-jxca .zicnn-ax dberl yexita miqgiizn epgp` ef dceara

epgp` .xzei miillk miicnn-ax mitebl mb mini`zn minzixebl`dn wlg la` ,xeyina

yexcl xyt` ,lynl .dberd-zeqext ly dxevd lr zeyxetn zeyixc aivdl mixyt`n

e` ,(ofe`n agex/daeb qgi mr oaln) ony oaln e` ,reaix zxeva dqext lawi owgy lky

zeyixcd mr cgi ,el` zeyixc micakny minzixebl` mibivn epgp` .edylk ony rlevn

.d`pw meiw-i`e ziwlg-zeilpeivxetext ly zeiq`lwd

,dycge dixh xepzdn z`vei dberd .inrt-cg jildz `id dber zwelg .ycgn dwelg .2

xak rwxwd ,miax mixwna .jynzn jildz `id rwxw zwelg la` .ciin zwlegne

ervea zeix`xb` zenxetx .zix`xb` dnxetx --- ycgn dwelg rval jixve ,zwlegn

z`fk dnxetx rval zepeiqip mireci .dixehqda zepey zetewza mlera miax zenewna

cre ,(spxpwa ixvnd jlnd i"r) dwizrd mixvna dxitqd iptl zipinyd d`ndn lgd

dheyt `l dl`y zxxern rwxw ly ycgn dwelg .(cplhewq zlynn i"r) 2016 zpy

obed wlgl zekfd oial ,miigkepd rwxwd-ilra ly oiipwd-zeiekf oia ie`xd oefi`d lr

zigkepd dwelgde , zwlegn xak dberdy migipn ep` ef dceara .rwxwd-ixqg ly

day ,ziwlg-zpbed dwelg `evnl mixyt`nd minzixebl` mirivn ep` .zpbed dpi`

zepibdd oia oefi`d mxeb .iwlg ote`a mixnyp miigkepd rwxwd-ilra ly oiipwd-zeiekf

zeyixc oia aeliyl mb miqgiizn ep` .dlynnd ici-lr zeqiel ozip oiipwd-zekf oial

e` ,zexiyw eidi zeqextdy dyixcd :oebk ,zeixhne`ib zeyixc oial ycgn-dwelgd

.zexenw e` ,zeipaln

.zepibdd xign lr oeilr mqg biydl mb epl mixyt`n ycgn dwelgl minzixebl`d

ly zelrezd mekq day dwelgd) xzeia dlirid dwelgd oia qgid `ed zepibdd xign

dxagdy xignd edf .xzeia dlirid zpbedd dwelgd oial ,(xzeia deab `ed mipwgyd

ly zernynd .zepibdl dyixcd zxenz ,zilklk zlrez ly migpena ,mlyl dkixv

epgp` ,xnelk .daxd mlyl dkixv `l dxagdy ,`id "zepibdd xign lr oeilr mqg"

zepibdd xignl minqg e`vnp zencew zeceara .zepibdl dyixcdn daxd miciqtn `l

`evnl ick ycgn-dwelgl minzixebl`a miynzyn epgp` ef dceara ;zicnn-cg dbera

.rwxw enk ,zicnn-ec dbera zepibdd xignl mipeilr minqg

zepibdd okle ,cg` mc` ici-lr zlk`p dqext lk ,dber miwlgnyk .zegtynl dwelg .3

-na ,rwxw miwlgnyk mle` .owgy lk ly iyi`d mrhd ici-lr wx zrawp dwelgd ly

b



dwelg .ipyd owgyd ly wlgd enk zegtl aeh wlg envrl gihadl leki owgy lk .a

1 ."d`pw `ll dwelg" z`xwp ef dpekz zniiwnd

dxew dn :dl`yd z` ciin zxxern "xgea ipyde wlgn cg`" jildzd ly dglvdd

ly xn`na 1948 zpya dpzip ef dl`yl dpey`x daeyz ?miyp` ipyn xzei yiyk

ipy ici-lr gzety ,mzixebl` mqxit `ed .fedpiihy ebed iplet-icedid i`wihnznd

mzixebl`d .miyp` ly xtqn lkl zilpeivxetext dwelg xviind ,xhqpwe jpa eicinlz

ieeydn 1/n zegtl exear deeyy dwlg lawi ,ze`xedd itl wgyiy mc` lky ,gihan

.miyp`d xtqn `ed n xy`k ,llekd

dl`y xzt `ed .zpbed dwelg :`xwpy ycg xwgn-megz gzt fedpiihy ly xn`nd

`idy ,miyp` ly xtqn lkl dwelg `evnl xyt` ji` :zeycg zel`y daxd xxere ,zg`

zeikeaiqd dn ,xnelk - z`fk dwelg `evnl ick rval jixv zelert dnk ?d`pw `ll mb

,dwelgl mipzip mpi`y mivtg mpyi rwxwa m` dxew dn ?mzixebl`d ly ziaeyigd

`yc zqit `id rwxwdyk ,lynl ,ilily jxr yi rwxwl m` dxew dn ?mipiipa oebk

mibdep mipwgydyk dxew dn ?ohw xzeiy dnk ghy gqkl dvex cg` lke ,gqkl jixvy

dwelg biydl xyt` m`d ?wgynd lr zeivletipn zeyrl miqpne zibhxhq` dxeva

zeiekf yi mipey mipwgyl m` miyer dn ?(ehx`t dliri) zilklk dliri mb `idy zpbed

xvei `ede ,zepexg`d mipya c`n lirt zpbed dwelga xwgnd .cere ?rwxwd lr zepey

2 .dpicnd-ircn iyp`e miplklk ,aygn-iprcn ,mi`wihnzn oia mipiiprn dlert-iteziy

zeaeyg ody zel`y dnk lr dpr `l oiicr zpbed dwelg `yepa xiyrd xwgnd

-ynn llk-jxca ,ipbexhd a`yn zwelg lr mixacnyk .rwxw miwlgnyk cgeina

ziira" dtya z`xwp ipbexhd a`yn ly zpbedd dwelgd ziira - dberl eze` mili

oial rwxw oia miaeyg milcad dnk yi .dber `l `id rwxw ,la` ."dberd zwelg

wlgl ick .zerwxw zwelg jxevl dber-zwelg ikildza ynzydl epilr miywnd ,dber

.dl` mi`yepl qgiiziy jk "dber"d lcen z` xtyl jixv ,zerwxw

jk lk `l zeqextd ly zixhne`ibd dxevd ,dber miwlgnyk .zixhne`ib dwelg .1

dber zwelgl miniiwd mikildzd ok`e .oze` lek`l mipeekzn epgp` `linn ,daeyg

-cg rhw `id dberdy migipn md ,miax mixwna .zixhne`ib dxevl miqgiizn mpi`

.mirhw-zz ly cegi` e` rhw-zz `id dqext lke ,icnn

ziyeniy ,lynl ,zipaln rwxw .daeyg zixhne`ibd dxevd ,rwxw miwlgnyk la`

jxca la` ,mdipia wlegn ghyd lke miyp` ipy wx mpyi xy`k efl ef zelewy elld zepekzd izy1

.zei`nvr zepekz izy el` llk
inzixebl` yibpdl ezxhny ,geex zpeek `ll xz` edf .spliddit.org xz`d xie`l dlr miizpyk iptl2

ildpn zecr itl .zepey dwelg-zeira yngl minzixebl` rivn xz`d meik .agxd xeaivl zpbed dwelg
.miigdn zeira oexztl ea eynzyd xak miyp` itl` zexyr ,xz`d

a



xivwz
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