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Notation

The following table can serve as a quick reference for notation used throughout the thesis. For detailed
formal definitions, see the model, in Chapter 2 on page 6.

Notation Meaning
d dimensions. Usually d = 2 since we divide a two-dim. resource.
C Cake, the thing that should be divided fairly. A subset of Rd.
R upper bound on length/width Ratio of a geometric object.
S Set of pieces that are considered usable, e.g. squares, R-fat objects.
T number of reflex verTexes of a rectilinear polygon.
n number of agents (people) entitled to receive a piece.
i index of an agent. i ∈ {1, . . . , n}.
vi value-density of agent i; function from C to R.
Vi Value-measure of agent i (integral of vi).
VS

i Utility-function of agent i who can use only pieces from S.
Xi piece of cake allocated to agent i.
X cake allocation; n pairwise-disjoint pieces: X = (X1, . . . , Xn).
Y, Z alternative allocations.
Prop(C, S, n) Proportionality function; see Chapter 3.
PropEF(C, S, n) Envy-free-proportionality function; see Chapter 4.



Abstract

This research presents algorithms for fair division of land. The algorithms take as input a heterogeneous
land-estate, and several people with different preferences over parts of the land-estate. They return as
output a partition of the land-estate among the people, such that each person agrees that his/her share is
“fair”.

The baseline of this research is the classic problem of fair cake-cutting. There are many algorithms that
take as input a heterogeneous cake and several people with different tastes, and give each person a piece
the he/she considers “fair”. However, these algorithms cannot be directly applied to fair division of land,
since land is not a cake. There are several differences between land and cake, and they require new fair
division algorithms.

The first difference is geometry. When a cake is divided, the geometric shape of the pieces is usually
ignored. It is often assumed that the cake is a one-dimensional interval and that the pieces are sub-intervals
or finite collections thereof. In contrast, when land is divided, the two-dimensional geometric shape of the
pieces is of crucial importance. We present fair division algorithms that can handle multi-dimensional
geometric constraints on the pieces. In particular, we present algorithms that guarantee that each piece is
a square, a fat rectangle (a rectangle with a bounded length/width ratio) or an arbitrary fat object. We give
upper and lower bounds on the degree of “fairness” (the value guarantee per agent) as a function of the
geometric constraints.

The second difference is redivision. A cake is usually divided when it is fresh and new, so that no
people have a previous claim on it. In contrast, many land-resources are already divided, and it is often
required to re-divide them, as in a land-reform. We present algorithms for fair re-division, which balance
the ownership rights of existing land-owners and the fairness claims of landless citizens. We first present
a baseline algorithm for redivision without geometric constraints. Then, we combine the redivision model
with the geometry model and present a redivision algorithm that can also handle one-dimensional and
two-dimensional geometric constraints.

The redivision algorithms have implications on another important issue in fair division — the trade-
off between fairness and efficiency. Our redivision algorithms allow us to prove upper bounds on the
price-of-fairness — the loss of efficiency due to fairness considerations — with geometric constraints.

The third difference is group ownership. A piece of cake is usually eaten by a single person. In contrast,
a plot of land is usually owned by a group, such as a family or a community. Different family members
may have different preferences. We present algorithms for fair division that respect the different tastes of
group-members.

While the primary focus of this research is land division, the concepts introduced herein are applicable
in other division problems. Geometric considerations are relevant when dividing other two-dimensional
resources, such as advertisement space in print or electronic media. Redivision considerations are relevant
in other dynamic division problems, such as dividing computation resources among processes. Group
ownership considerations are relevant also in the classic economic setting of dividing homogeneous re-
sources among families. We believe the present research will enrich the general fair division literature by
adding these new considerations.
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Chapter 1

Introduction

1.1 The Land Problem

This research has been motivated by a pressing social problem — the rising prices of housing in Israel.
Israeli youth find it more and more difficult to afford a house, and this problem is largely related to their
inability to own land.1

Land division is not only a problem of the present. It has been an important issue since Biblical times.
This is evident from the commandment to divide the land of Israel among the tribes in proportion to their
size (Numbers 26:53-54), through the protests of the prophets against unfair land allocation (e.g. Isaiah
5:8), to the latter-day prophecies describing a futuristic fair land division (e.g. Ezekiel 47:14).

Land division is, of course, not only an Israeli problem. It has been an important issue all around the
globe. Fair division of land has been the goal of numerous land reforms carried out in all five continents
throughout history.2 The earliest recorded land-reform attempts were done by Egyptian king Bakenranef
in 8th century BC (Powelson, 1988). The latest such attempt was done by the Scottish government in 2016
AD.3

1.2 The Fair Division Solution

This research studies fair division of land from the perspective of a computer scientist. Its goal is to develop
algorithms for fair division of land. The input to such an algorithm is a land-estate that has to be divided
among several people. The goal is that all people agree that the division is “fair”. When I tell people about
this goal, their immediate reply is:

That’s impossible! Different people have different tastes. Some people might claim that a fair
division should give each person access to the road; others might claim that that you must give
each person the same area of seashore; yet others might claim that you should give each person
the same probability of finding oil; there are as many opinions as there are people. How can
you hope to find a division that will be conceived as fair by everyone?

They are quite surprised when I tell them the following 4-word algorithm:

I cut.
You choose.

This algorithm is so simple, that it is even used by children to divide a birthday-cake. 4 It does not

1This is illustrated by the fact that people who own land can build a home in less than one year of labor (MarkerWeek 14.7.2013,
http://www.themarker.com/markerweek/1.2069919), in contrast to over 8 years that are required to buy a house without own-
ing land (Calcalist 26.02.15, http://www.calcalist.co.il/real_estate/articles/0,7340,L-3653354,00.html . See also BizPortal 4.4.2013
http://www1.bizportal.co.il/article/356140). Retrieved 21.11.16.

2See the Wikipedia page “Land reforms by country” for more details
3Land Reform (Scotland) Act 2016, http://www.gov.scot/Topics/Environment/land-reform retrieved 21.11.16
4This algorithm is already alluded to in the Bible (Genesis 13:9): when Abraham and Lot wanted to divide the land of Canaan

between them, Abraham suggested a division of the land to two parts, and let Lot be the first to choose his part. See Isaac
Dov Paris, "fairness and justice in dividing property" (Hebrew), http://www.daat.ac.il/mishpat-ivri/skirot/143-2.htm retrieved
21.11.16.
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require any details about the land. It does not need to know the location of the road, nor the amount of
seashore, nor the probability of finding oil, nor any other particular feature of the land. It can be imple-
mented by any two people on their own — they do not have to employ an expert (and expensive) real-estate
assessor.

Despite its simplicity, this algorithm can be called “fair”. To see why it is fair, suppose first that the
cutter divides the land to two pieces that are equal in his eyes, and that the chooser chooses the piece that
is better in his eyes. The resulting division has two properties:

1. Each person receives a piece that is worth at least 1/2 of the total value, according to his own taste.
This property is called proportionality.

2. Each person receives a piece that is at least as good as the other piece, according to his own taste.
This property is called envy-freeness.5

What happens if one of the participants does not follow the rules? In that case, the division is still “fair”
for the other participant. For example, if the cutter “breaks the rules” by cutting the cake to two unequal
pieces, then the chooser can still follow the rules and pick the piece that is better in his eyes, so his piece
is still worth at least 1/2 of the total value and at least as much as the other piece. Similarly, if the chooser
breaks the rules by choosing the piece that is worse in his eyes, then the cutter (who followed the rules) still
receives a piece that is worth exactly 1/2 of the total value and exactly the same as the other piece. When
you use this algorithm, you receive a personal fairness guarantee, that does not depend on what the other
person does: as long as you keep the rules, you are guaranteed a fair share.

Proportionality and envy-freeness are two very natural definitions of fairness, so it is nice that such a
simple algorithm “I cut, you choose” can guarantee both of them.

The success of the “I cut, you choose” algorithm for two people naturally invokes the question: what
happens when there are more than two people? The first person to ask this question was the Jewish-
Polish mathematician Hugo Steinhaus. After World War II, he posed this question to two of his students,
Banach and Knaster. They developed an algorithm that finds a proportional division for n people. Steinhaus
published their algorithm (Steinhaus, 1948). This publication initiated a new field of research, that is now
called: fair division.

Since then, the fair division problem has been studied by many researchers from different disciplines:
mathematicians, economists, computer scientists and political scientists. Each discipline has brought its
own questions and answers. Some of the interesting questions are: how can we find an envy-free division
for n people? What is the runtime complexity of fair division (how many queries are required)? What
happens if some of the items to divide are indivisible? What if the items have negative value (like a piece
of lawn that has to be mowed)? What are the strategic properties of fair division algorithms, when they are
viewed as competitive games? Is it possible to attain a fair division that is also economically efficient? What
if people have different entitlements? What if there are externalities between the agents? What if the agents
can form coalitions? And so on (see the Related Work section below for some references).

A particularly exciting recent development is the launching of several websites that let visitors apply
state-of-the-art fair division algorithms to their own problems: FairOutcomes6, The Fair Division Calcu-
lator7 and Spliddit.8 The latter website has been used by tens of thousands of visitors (Goldman and
Procaccia, 2015), demonstrating the practical usefulness of fair division algorithms.

1.3 Applying Fair Division to Land

In the world of fair division, there are many different kinds of problems, depending on whether the re-
sources to divide are homogeneous or heterogeneous, divisible or indivisible, and so on. We are interested
of fair division of land, which is heterogeneous and divisible. The sub-field of fair division that handles
heterogeneous and divisible resources is called fair cake-cutting. This uses the metaphor of Steinhaus (1948),
of cutting a birthday cake among several siblings with different tastes. Indeed, many researchers explicitly
mention land division as an important application of fair cake-cutting (e.g. Berliant and Raa, 1988; Berliant

5When there are two people and the entire land is divided, proportionality and envy-freeness are equivalent. This is not the
case when there are more than two people or when some of the land is left undivided, so these two properties are independent.

6http://www.fairoutcomes.com/
7https://www.math.hmc.edu/s̃u/fairdivision/calc/
8http://www.Spliddit.org
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et al., 1992; Legut et al., 1994; Chambers, 2005; Dall’Aglio and Maccheroni, 2009; Hüsseinov, 2011; Nicolò
et al., 2012).

However, the cake metaphor might be misleading. Land is not a cake, and indeed existing cake-cutting
algorithms have several shortcomings that make them impractical for division of land. This is the main
motivation for the present research. Our goal is to develop new division algorithms, that handle the con-
siderations that are important in land division.

We focus on three topics — three main differences between cakes and lands.

1. Geometry. When a cake is divided, the geometric shape of the pieces is usually ignored. It is often
assumed that the cake is a one-dimensional interval and that the pieces are sub-intervals or finite collections
thereof. In contrast, when land is divided, the two-dimensional geometric shape of the pieces is of crucial
importance. This work extends the cake-cutting model to handle multi-dimensional cakes. It presents
fair division algorithms that can handle multi-dimensional geometric constraints on the pieces. Due to its
length, this part is divided to two chapters:

• Chapter 3 focuses on the simpler fairness requirement — proportionality — each agent is guaranteed
a piece worth for him at least a given fraction of the total cake value. It presents algorithms that
guarantee that the pieces are squares or fat rectangles (rectangles with a balanced length/width ratio).

• Chapter 4 adds the second fairness requirement — envy-freeness — each agent is guaranteed a piece
worth for him at least as much as any other piece. It presents algorithms that guarantee that the
pieces are squares or fat rectangles, but can also handle more general geometric constraints such as
arbitrary fat pieces.

An interesting aspect of this work is the combination of different disciplines: computer science, geometry
and economics. Indeed, parts of this work have appeared in preliminary forms in the AAAI 2015 confer-
ence (Segal-Halevi et al., 2015a) and EuroCG 2016 conference, and are now under revision for the Journal
of Mathematical Economics.

2. Redivision. A cake is usually divided when it is fresh and new, so that no people have a previous claim
on it. In contrast, many land-resources are already divided, and it is often required to re-divide them, as in
a land-reform. In Chapter 5 we present algorithms for fair re-division, which balance the rights of existing
land-owners and those of new landless citizens. We first present a baseline algorithm for redivision without
geometric constraints. Then, we combine the redivision model with the geometry model and present a
redivision algorithm that can also handle one-dimensional and two-dimensional geometric constraints.

The redivision algorithms have implications on another important issue in fair division — the trade-
off between fairness and efficiency. Our redivision algorithms allow us to prove upper bounds on the
price-of-fairness — the loss of efficiency due to fairness considerations — with geometric constraints.

3. Family ownership. A piece of cake is usually eaten by a single person. In contrast, a plot of land is
usually owned by a group, such as a family or a community. Different family members may have different
preferences. In Chapter 6 we present algorithms for fair division that respect the different tastes of group
members.

While the primary focus of this research is land division, the concepts introduced herein are applicable in
other division problems. Geometric considerations are relevant when dividing other two-dimensional re-
sources, such as advertisement space in print or electronic media. Redivision considerations are relevant in
other dynamic division problems, such as dividing computation resources among processes. Group own-
ership considerations are relevant also in the classic economic setting of dividing homogeneous resources
among families. We believe the present research will enrich the general fair division literature by adding
these new considerations.

1.4 Related Work

Fair division has greatly evolved since the days of Steinhaus, with hundreds of research papers and several
books (Brams and Taylor, 1996; Robertson and Webb, 1998; Moulin, 2004; Barbanel, 2005; Brams, 2007;
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Brânzei, 2015). A comprehensive survey of this literature is beyond the scope of this work, but to illustrate
the diversity of the fair division research, we present some of its questions below.

1. A long-standing open question was how to find an envy-free cake-cutting for n people. The Banach-
Knaster algorithm from the forties guarantees a division that is proportional but not necessarily envy-free.
Envy-free division turned out to be much more difficult. It was solved only in the nineties. Three different
algorithms find an envy-free division with disconnected pieces in finite but unbounded time (Brams and Taylor,
1995; Robertson and Webb, 1998; Pikhurko, 2000). A fourth algorithm finds an envy-free division with
connected pieces but in infinite time. Brams et al. (2011) prove that the divide-and-conquer algorithm of Even
and Paz (1984), while not guaranteeing envy-freeness, minimizes the maximum number of players that
any single player can envy (the minimum taken over a family of algorithms for proportional cake-cutting).

2. Computer scientists have been mainly interested in the computational complexity of cake-cutting:

• How many queries are required to find a proportional cake-cutting? The Banach-Knaster algorithm
uses O(n2) queries, but a later algorithm by Even and Paz (1984) requires only O(n log n) queries.
Moreover, recent results by Edmonds and Pruhs (2006b); Woeginger and Sgall (2007) show that this
is asymptotically optimal.

• How many queries are required for envy-free cake-cutting? Stromquist (2008) proved that an infi-
nite number of queries may be required when the pieces are connected; Procaccia (2009) proved that
Ω(n2) queries may be required when pieces may be disconnected. Gasarch (2015) presented a com-
parison among the three unbounded procedures for envy-free fair division. Very recently, Aziz and
Mackenzie (2016) published the first bounded-time algorithm for envy-free cake-cutting (with dis-

connected pieces). Their algorithm requires nnnnnn

queries, much more than the upper bound of n2,
so there is still a lot of room for improvement. We made a modest contribution to this line of research
by presenting quicker algorithms for envy-free cake-cutting, with either connected or disconnected
pieces, when it is allowed to leave some cake unallocated (Segal-Halevi et al., 2015b).

3. The strategic aspects of cake-cutting have attracted the attention of researchers in algorithmic mecha-
nism design:

• Are there fair cake-cutting algorithms that are also truthful, meaning that an agent always receives
the highest possible value by playing according to his true valuations? “I cut, you choose” is not
truthful, since an agent who knows the other agent’s preferences may get a better piece by playing
untruthfully. This will not damage the fairness guarantee to the other agent, but it might encourage
the agents to spy on each other, which is undesirable. Recently, Chen et al. (2013); Aziz and Ye
(2014) showed truthful algorithms for the special cases in which the agents’ valuations are piecewise-
uniform or piecewise-constant. In contrast, Brânzei and Miltersen (2015) showed that in the general
case, every truthful query-based algorithm might give one of the agents a worthless piece, so there is
a fundamental conflict between truthfulness and fairness.

• What happens when agents can not only lie about their preferences, but also create duplicates? Tsu-
ruta et al. (2015) study the notion of false-name-proof mechanisms for cake-cutting.

• How do agents behave when they play a non-truthful cake-cutting algorithm? Is there a Nash equi-
librium, and what are its properties? Brânzei et al. (2016) present a framework for studying this
question and give some answers.

4. Economists have been mainly interested in the economic efficiency of cake-cutting:

• The fundamental definition of economic efficiency is Pareto-efficiency — there is no allocation which is
better for one person and not worse for another one. Varian (1974) proved that, under fairly general
conditions, there exists a Pareto-efficient and envy-free division of homogeneous resources. Weller
(1985) proved a similar resource for a cake — a heterogeneous resource. Barbanel (2005) presented al-
ternative proofs. Reijnierse and Potters (1998) showed how to (approximately) find a Pareto-efficient
envy-free cake division. These results give each agent a disconnected piece. If each agent must get
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a connected piece, then an envy-free and Pareto-efficient division might not exist (Stromquist, 2007).
What if each agent may get a union of two connected pieces? This question is still open.

• Another measure of economic efficiency is the social welfare — usually defined as the sum of utilities
of all agents (Bentham, 1789; Mill, 1863). It is possible to calculate an allocation that approximates
the maximum welfare (Aumann et al., 2013), but this allocation might not be fair. In contrast, a fair
allocation might have a low social welfare. This invokes the question of what is the “price of fairness”
— how much does society have to pay, in terms of welfare, for the different fairness requirements?
Aumann and Dombb (2015) and Caragiannis et al. (2012) and Arzi (2012) study this question in
various settings. Finally, Cohler et al. (2011); Bei et al. (2012) show how to calculate an allocation with
optimal social welfare subject to fairness requirements.

5. What happens when there are indivisible items? The “I cut, you choose” algorithm assumes that the
cake can always be divided to halves without losing value, but what if there are houses or trees, that cannot
be divided? The papers on this topic are far too many to mention; see Bouveret et al. (2016) for a recent
survey.

6. What happens when different agents have different entitlements? McAvaney et al. (1992) and Robert-
son and Webb (1995) present some solutions, but they require a large number of cuts; it is still open whether
such weighted-fair divisions can be found using a smaller number of cuts.

7. What happens when there are externalities, i.e, the utility of an agent depends on the pieces allocated
to other agents? See Brânzei et al. (2013). What happens when agents can cooperate and form coalitions
before the division process? See Dall’Aglio et al. (2009).

In each of the following chapters, we present work that is more closely related to that chapter.
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Chapter 2

Model

This chapter presents general definitions and notations that are applicable in all following chapters. Each
of the following chapters will contain additional definitions and notations specific to that chapter.

2.1 Cake

The object that should be divided is called a cake, and denoted by C. In the cake-cutting literature, it is often
assumed that C is a one-dimensional interval. In this work, we will usually assume that C is a polygon in
the Euclidean plane R2, but we will also consider more general cakes that are objects in a d-dimensional
Euclidean space Rd.

Pieces of C are Borel subsets of C — the subsets that can be formed from open subsets through the
operations of countable union, countable intersection, and relative complement.

2.2 Agents

The people among whom the cake should be divided are called agents. There are n agents, where n ≥ 1.
Each agent i ∈ {1, . . . , n} has a value-density function vi, which is a real, integrable, bounded and non-

negative function on C. Value-density functions are common in real-estate assessments, for example, it
is common to say that “in neighborhood X, the house prices are $2000 per square meter.” However, it
should be emphasized that each agent has a personal value-density function, that need not be related to
the market prices. Different agents may have different value-density functions; this is what makes the fair
division problem interesting.

The value of a piece Xi to agent i is marked by Vi(Xi) and it is the integral of its value-density:

Vi(Xi) =
∫

x∈Xi

vi(x)dx

Even when C is unbounded, we assume that the vi have finite support — they are nonzero only in a
bounded subset of C. Hence the Vi are always finite.

The definition implies that the Vi are measures. In particular, they are countably additive: when a piece
is divided to parts (even countably many parts), the value of the piece equals the sum of the values of its
parts.

Moreover, the definition implies that the Vi measures are absolutely continuous with respect to the Lebesgue
measure, i.e., any piece with zero Lebesgue measure (length, area, etc.) has zero value to all agents. This
implies, in particular, that from any piece with a value of V, we can cut a sub-piece with a value of α · V,
for any fraction α ∈ [0, 1]. This assumption is already implicitly made by the “I cut, you choose” algorithm
— it assumes that the cutter can cut the cake into two pieces with a value of exactly half the original value.
Now we have a formal model that justifies this assumption.

2.3 Queries

The division protocols access the value measures via queries (Robertson and Webb, 1998): an eval query asks
an agent to reveal its value for a specified piece of cake; a mark query asks an agent to mark a piece of cake
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with a specified value.
In this work, we ignore strategic considerations and assume that all agents answer truthfully. As usual

in the cake-cutting literature since Steinhaus (1948), the fairness guarantees of our algorithms are valid for
every single agent answering the queries truthfully, regardless of the behavior of the other agents. This is
the common practice in the cake-cutting world.1

However, our protocols are not dominant-strategy-truthful, i.e, an agent may gain by answering un-
truthfully. Designing dominant-strategy-truthful mechanisms for cake-cutting is known to be a difficult
problem even in one dimension (Brânzei and Miltersen, 2015).

As an alternative to queries, it may be more convenient to let agents submit their entire value-density
function to a referee, who will calculate the division for them.2 One way to do this is illustrated in a simple
web-page that I built to demonstrate some of the algorithms for two-dimensional land division (Chapter
3).3 The web-page lets the agents arrange points on the cake. Each point represents a certain amount
of value. So, each agent can put more points in areas that are more valuable in his/her eyes. Once the
points are arranged, the application automatically uses them to calculate the valuation functions and the
fair division, without the need to query the agents.

2.4 Allocations

An allocation is a vector of n pieces, X = (X1, . . . , Xn), one piece per agent, such that the Xi are pairwise-
disjoint and contained in C. We express the latter two facts succinctly using the “disjoint union” operator,
t :

X1 t · · · t Xn ⊆ C

The above definition implies that some cake may remain unallocated, i.e, free disposal is assumed. This is a
reasonable assumption in land division: it is usually allowed, and often even desired, to leave some public
lands unallocated.

2.5 Fairness

There are two common definitions of fairness. Both of them are natural generalizations of the guarantees
of the “I cut, you choose” protocol described in the introduction.

1. Proportionality. Traditionally, a division X is called proportional if each agent receives at least 1/n of
the total cake value, according to its personal valuation:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥ Vi(C)/n

In this work, we will often have to relax the proportionality requirement and require partial-proportionality.

Definition 2.5.1. The proportionality of a division X is defined as the largest value p such that:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥ p ·Vi(C)

Equivalently, the proportionality of X is:

Prop(X) :=
n

min
i=1

Vi(Xi)/Vi(C)

By this definition, X is proportional if-and-only-if Prop(X) ≥ 1/n.

1In the words of Steinhaus (1948): “The greed, the ignorance, and the envy of other partners cannot deprive him of the part
due to him in his estimation; he has only to keep to the methods described above. Even a conspiracy of all other partners with the
only aim to wrong him, even against their own interests, could not damage him.”

2We are grateful to a referee for suggesting this option.
3http://tora.us.fm/geometry/fair-division.html
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2. Envy-freeness A division X is called envy-free if each agent receives at least as much as any other
agent, according to its personal valuation. Formally:

Definition 2.5.2. A division X is called envy-free if

∀i, j ∈ {1, . . . , n} : Vi(Xi) ≥ Vi(Xj)

2.6 Geometry

The geometric constraints on the pieces (if any) are represented by a set of usable pieces, which is denoted by
S. For example, S may be the family of intervals, rectangles or squares. An element of S is called an S-piece.
We assume that each agent can use only a single S-piece.4 An allocation X where for every i, Xi ∈ S, is
called an S-allocation.

Based on the value measures Vi and the geometric family S, the fair land division problem can be
formulated in two equivalent ways.

1. Geometry is an external restriction. The division algorithms must return only S-allocations. So, for
example, an envy-free land-division algorithm should give each agent i an S-piece Xi such that ∀i, j :
Vi(Xi) ≥ Vi(Xj).

2. Geometry is a part of the agents’ utility functions. An agent can derive utility only from an S-piece;
when his allotted land-plot is not an S-piece, he selects the most valuable S-piece contained therein and
utilizes it. For each agent i, we define the S-value function, which assigns to each piece Xi the value of the
most valuable usable piece contained in it:

VS
i (Xi) = sup

s∈S , s⊆Xi

Vi(s)

Now, the division algorithms may return any allocation, but the fairness guarantees are judged according
to the agents’ S-value functions. So, for example, an envy-free land-division algorithm should give each
agent i a piece Xi such that ∀i, j : VS

i (Xi) ≥ VS
i (Xj). Note that, in contrast to the Vi that are measures,

the VS
i are usually not measures since they are not additive. This means that cake-cutting algorithms that

require additivity cannot be used.

The above two formulations are equivalent and we will use them interchangeably.

Fatness

In land division, it is often preferred that the pieces will have a balanced length/width ratio — not too long
in one dimension and too short in another dimension. This preference is captured by the the concept of
fatness, which we adapt from the computational geometry literature, (e.g. Agarwal et al., 1995; Katz, 1997):

Definition 2.6.1. Let R ≥ 1 be a real number. A d-dimensional piece is called R-fat, if it contains a d-
dimensional cube B− and is contained in a parallel d-dimensional cube B+, such that the ratio between the
side-lengths of the cubes is at most R: len(B+)/len(B−) ≤ R.

A 2-dimensional cube is a square. So, for example, the only 2-dimensional 1-fat shape is a square. An
L× 1 rectangle is L-fat, a right-angled isosceles triangle is 2-fat and a circle is

√
2-fat (see Figure 2.1).

Note that R is an upper bound, so if R2 ≥ R1, every R1-fat piece is also R2-fat. So a square is also e.g.
2-fat and 3-fat, but a 10-by-20 rectangle is not 1-fat.

4If we want to allow each agent to use e.g. two squares, then we can just define S to be the family of all square-pairs. So the
assumption of one S-piece per agent does not lose generality.
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1 fat 2 fat 2 fat
√

2 fat 3 fat

Figure 2.1: Fatness of several 2-dimensional geometric shapes. The dashed square is the largest contained
cube; the dotted square is the smallest containing parallel cube. The shape is R-fat if the ratio of the side-
lengths of these squares is at most R.
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Chapter 3

Geometric Proportional Division
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This chapter was presented in the EuroCG 2016 conference and is now under revision for the Journal of Mathematical
Economics.

3.1 Introduction

In many cake-cutting papers, it is assumed that the cake is a one-dimensional interval and the pieces are
sub-intervals. This assumption is usually justified by the reasoning that higher-dimensional settings can
always be projected onto one dimension, and hence fairness in one dimension implies fairness in higher
dimensions.1 However, projecting back from the one dimension, the resulting two-dimensional plots are
thin rectangular slivers, of little use in most practical applications; it is hard to build a house on a 10× 1, 000
meter plot even though its area is a full hectare, and a thin 0.1-inch wide advertisement space would ill-
serve most advertisers regardless of its height.

We claim that the two-dimensional shape of the allotted piece is of prime importance. Hence, we seek di-
visions in which the allotted pieces must be of some restricted family of “usable” two-dimensional shapes,
e.g. squares or polygons of balanced length/width ratio.

Adding a two-dimensional geometric constraint re-opens most questions and challenges related to
cake-cutting. Indeed, even the elementary proportionality criterion can no longer be guaranteed.

Example 3.1.1. A homogeneous square land-estate has to be divided between two heirs. Each heir wants
to use his share for building a house with as large an area as possible, so the utility of each heir equals
the area of the largest house that fits in his piece (see Figure 3.1). If the houses can be rectangular, then it
is possible to give each heir 1/2 of the total utility (a); if the houses must be square, it is possible to give
each heir 1/4 of the total utility (b) but impossible to give both heirs more than 1/4 the total utility (c). In
particular, when the allotted pieces must be square, a proportional division does not exist.2

This example invokes several questions. What happens when the land-estate is heterogeneous and each
agent has a different utility function? Is it always possible to give each agent a 2-by-1 rectangle worth for
him at least 1/2 the total value? Is it always possible to give each agent a square worth for him at least 1/4
the total value? Is it even possible to guarantee a positive fraction of the total value? If it is possible, what

1In the words of Woodall (1980): "the cake is simply a compact interval which without loss of generality I shall take to be [0,1].
If you find this thought unappetizing, by all means think of a three-dimensional cake. Each point P of division of my cake will
then define a plane of division of your cake: namely, the plane through P orthogonal to [0,1]".

2Berliant and Dunz (2004) use a very similar example to prove the nonexistence of a competitive equilibrium when the pieces
must be square.
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(a) Two disjoint rectangles worth 1/2 (b) Two disjoint squares worth 1/4 (c) No two disjoint squares worth more than 1/4

Figure 3.1: With geometric constraints, a proportional allocation might not exist.

division procedures can be used? How does the answer change when there are more than two agents?
Such questions are the topic of the present chapter.

We use the term proportionality to describe the fraction that can be guaranteed to every agent. So when
the shape of the pieces is unrestricted, the proportionality is always 1/n, but when the shape is restricted,
the proportionality might be smaller. Naturally, the attainable proportionality depends on both the shape
of the cake and the desired shape of the allotted pieces. For every combination of cake shape and piece
shape, one can prove impossibility results (for proportionality levels that cannot be guaranteed) and possibil-
ity results (for the proportionality that can be guaranteed). While we examined many such combinations,
the present chapter focuses on several representative scenarios which, in our opinion, demonstrate the
richness of the two-dimensional cake-cutting task.

Walls and unbounded cakes

In Example 3.1.1, the two pieces had to be contained in the square cake. One can think of this situation as
dividing a square island surrounded in all directions by sea, or a square land-estate surrounded by 4 walls:
no land-plot can overlap the sea or cross a wall.

In practical situations, land-estates often have less than 4 walls. For example, consider a square land-
estate that is bounded by sea to the west and north but opens to a desert to the east and south. Allocated
land-plots may not flow over the sea shore, but they may flow over the borders to the desert.

Cakes with less than 4 walls can also be considered as unbounded cakes. For example, the above-
mentioned land-estate with 2 walls can be considered a quarter-plane. The total value of the cake is as-
sumed to be finite even when the cake is unbounded. When considering unbounded cakes, the pieces are
allowed to be “generalized squares” with an infinite side-length. For example, when the cake is a quarter-
plane (a square with 2 walls), we allow the pieces to be squares or quarter-planes. When the cake is a
half-plane (a square with 1 wall), we also allow the pieces to be half-planes, etc. The terms “square with 2
walls” and “quarter-plane” are used interchangeably throughout the chapter.

3.1.1 Results

Our results can be broadly summarized as follows.

• Negative results: when the pieces have to be squares or fat rectangles, a proportional division is
usually 3 not guaranteed to exist. Moreover, there is a small constant A > 1 that depends on the
shape of the cake and usable pieces, such that the largest value that can be guaranteed to all agents is
1/(A · n).

• Positive results: when the pieces have to be squares or fat rectangles, a constant-factor approximation
to a proportional division is usually guaranteed to exist: there is a small constant B > 1 that depends
on the shape of the cake and usable pieces, such that all agents can be guaranteed a value of at least
1/(B · n).

3We have proved this for most, but not all the cases that we have studied. The exception is when the cake is an unbounded
plane and the pieces are non-parallel squares: in this case, we do not know whether a proportional division always exists. See
Table 3.1 below.
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Cake ↓ Impossibility Possibility

Square pieces
R-Fat rects

(R ≥ 2) Square pieces
R-Fat rects

(R ≥ 2)

4 walls
(Square) 1/(2n) * 1/(2n− 1)

1/(4n− 4) *
same: 1/(2n) *

1/(4n− 5)
same: 1/(2n− 1)

3 walls 1/(2n− 1) 1/(2n− 1)

2 walls
(quarter-plane) 1/(2n− 1) 1/(2n− 1)

1 wall
(half-plane) 1/( 3

2 n− 1) 1/(2n− 2)

0 walls
(plane)

axes-parallel: 1/( 10
9 n− 1) 1/ max(2n− 4, n)

parallel: 1/( 30
29 n− 1)

general: ? ?

Table 3.1: Summary of results for square cakes: upper and lower bounds on the level of attainable absolute
proportionality.
All results assume that there are at least two agents (n ≥ 2).
* means that the results are valid not only for square pieces but also for R-fat rectangles with R < 2.
? means that we do not have a non-trivial impossibility result for this case .

The constant A in our negative results is at most 2, and the constant B in our positive results is at least 2;
this leads us to conjecture that the "real" constant is 2, i.e, a half-proportional division with square pieces
always exists, and half-proportionality is the best that can be guaranteed. Currently we can prove this
conjecture only in several restricted scenarios, that are presented below.

Square cakes bounded or unbounded

In the first set of results, the cake is a square bounded in zero or more sides. Table 3.1 summarizes our
negative and positive results:

The Impossibility column shows upper bounds on the attainable proportionality. Each upper bound is
proved by showing a specific scenario in which it is impossible to give all agents more than the mentioned
fraction of their total value. The upper bound for a square with 4 walls and n = 2 is 1/(2n) = 1/4, as was
already seen in Example 3.1.1. The upper bounds for an unbounded plane are valid only when the pieces
must be squares parallel to a pre-specified coordinate system, or parallel to each other (as is common in
urban planning). The other upper bounds are valid even when the squares are allowed to be non-parallel.

The Possibility column shows our positive results. Each such result is proved constructively by an
explicit division procedure that gives each agent at least the mentioned fraction of their total value. The
same result means that there exists a different division procedure that guarantees a larger fraction per agent,
but this procedure works only when all agents have the same valuations. We do not know whether there
exists a division procedure that guarantees this larger fraction for agents with different valuations.

Note that all our impossibility results hold even for agents with the same valuations, and all our divi-
sion procedures return axes-parallel pieces.

Intuitively, one may think that allowing rectangles instead of just squares should considerably increase
the attainable proportionality level. But this is not the case if the pieces need to be fat. As seen in the table,
most results for fat rectangles are almost the same as for squares. The only exception is the impossibility
result for an unbounded plane, which we have not managed to extend to R-fat rectangles.

For n = 2, the proportionality levels in our possibility results are equal to the impossibility results. For
a cake with two or three walls the guaranteed proportionality is equal to the impossibility result for every
n. This means that in these cases, our procedures are optimal in their worst-case guarantee. For a cake with
4 walls, the guaranteed proportionality for agents with the same value measure is optimal. In the other
cases, there is a multiplicative gap of at most 2 between the possibility and the impossibility result.

A secondary consideration in geometric division problems, in addition to value, is the type of cuts used
for implementing the division. In some cases, guillotine cuts are preferred. Guillotine cuts are axis-parallel
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Figure 3.2: A circular cake where all value is near the perimeter. No positive value can be guaranteed to
an agent who wants a square piece.

Pieces ↓ Impossibility Possibility

Parallel
squares 1/(2n)

1/(8n− 6)
same: 1/(2n)

General
squares 1/(2n)

1/(16n− 14)
same: 1/(2n)

Parallel
R-fat rectangles 1/(2n− 1)

1/([4R + 4][n− 1] + 2)
same: 1/(2n)

Table 3.2: Summary of results for arbitrary compact cakes: upper and lower bounds on the level of attain-
able relative proportionality.

cuts running from one end to the opposite end of an already cut piece. They are considered easier to
implement (e.g. Alvarez-Valdés et al., 2002; Cui et al., 2008; Hifi et al., 2011). In the industry, guillotine
cuts are used for cutting stock such as plates of glass. In the context of land division, guillotine cuts may
be desired because they may make it easier to build fences between land-plots. Our procedures for a cake
with 4 walls find divisions that can be implemented using guillotine cuts. The other procedures use general
cuts, and we do not know if it is possible to attain the same value guarantees using guillotine cuts.

Bounded cakes of any shape

While some states in the USA are rectangular (e.g. Colorado or Wyoming), most land-estates have irreg-
ular shapes. In such cases, it may be impossible to guarantee any positive proportionality. For example,
consider Robinson Crusoe arriving at a circular island. Assume that Robinson’s value measure is such that
all value is concentrated in a very thin strip along the shore, as in Figure 3.2. The value contained in any
single square might be arbitrarily small. Clearly, no division procedure for n agents can guarantee a better
fraction of the total value.

Therefore, for arbitrary cakes we use a relative rather than absolute fairness measure. For each agent,
we calculate the maximum value that this agent can attain in a square piece if he doesn’t need to share the
cake with other agents. We guarantee the agent a certain fraction of this value, rather than a certain fraction
of the entire cake value. This fairness criterion is similar to the uniform preference externalities criterion
suggested by Moulin (1990b). Similar criteria have been recently studied in the context of indivisible item
assignment (Budish, 2011; Procaccia and Wang, 2014; Bouveret and Lemaître, 2015).

Table 3.2 summarizes our bounds on relative proportionality. The impossibility results follow trivially
from those for square cakes. The possibility results require new division procedures. They are valid for
any cake that is a compact (closed and bounded) subset of the plane. The guarantees are better when the
pieces are required to be axis-parallel. This is in accordance with the common practice in urban planning,
in which axis-parallel plots are usually preferred.
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3.1.2 Techniques

Most of our division procedures can be presented as sequences of auctions.4 The general process is as
follows. Initially, each of the n agents receives a ticket with an entitlement to share a certain cake, C, in a
group of n agents. Then, the divider performs a well-designed sequence of auctions. In each auction, the
winning agents exchange their ticket for another ticket with an entitlement to share a smaller cake C′ ⊂ C
in a smaller group of n′ < n agents. This goes on until finally each agent holds a private entitlement for a
single piece of the cake. Note that there are no monetary payments: the winners ’pay’ only by giving away
their tickets.

We use auctions of two types: mark auction and eval auction.5 They are presented briefly below; formal
definitions and detailed examples are given in Section 3.4.

• In a mark auction, each agent bids by marking a piece of cake. All bids must satisfy a given geometric
constraint (such as "mark a square at the bottom-left corner"). An agent bidding a piece Xi is inter-
preted as saying "I am willing to give my ticket in exchange for Xi". The agent bidding the smallest
piece is the winner. The winner receives his bid and goes home, while the remaining agents continue
to divide the remaining cake.

• In an eval auction, the divider specifies a piece C′ ⊂ C, and each agent bids by declaring his/her
evaluation of C′. An agent bidding a value V is interpreted as saying "I am willing to give my ticket
for sharing C in a group of n, in exchange for a ticket for sharing C′ in a group of n′(V).". Here n′

is some weakly-increasing function of V that depends on the situation. The agent or agents bidding
the highest values are the winners, since they are willing to share C′ with the largest number of other
agents. The number of winners is determined as the largest value n′ such that the n′ highest winners
are willing to share C′ in a group of n′. These winners go on and divide C′ among them, while the
remaining n− n′ agents continue to compete on C \ C′.

The geometric constraints are carefully designed in order to guarantee that the final pieces are usable. A
key geometric concept here is the cover number — the minimum number of squares required to cover a
given region. By making sure that all sub-pieces have a sufficiently small cover-number, we ensure that
they can be divided effectively. See Section 3.4 for details.

3.1.3 Related work

Many authors regard land division as an important application of division procedures (e.g. Berliant and
Raa, 1988; Berliant et al., 1992; Legut et al., 1994; Chambers, 2005; Dall’Aglio and Maccheroni, 2009; Hüs-
seinov, 2011; Nicolò et al., 2012). Hence, they note the importance of imposing some geometric constraints
on the pieces allotted to the agents.

The most well-studied constraint is connectivity — each agent should receive a single connected piece.
The cake is usually assumed to be the one-dimensional interval [0, 1] and the allotted pieces are sub-
intervals (e.g. Stromquist, 1980; Su, 1999; Nicolò and Yu, 2008; Azrieli and Shmaya, 2014)). Several
authors studied a circular cake (Thomson, 2007; Brams et al., 2008; Barbanel et al., 2009), but it is still a
one-dimensional circle and the pieces are one-dimensional arcs.

The importance of the multi-dimensional geometric shape of the plots was noted by several authors.
Hill (1983); Beck (1987); Webb (1990); Berliant et al. (1992) study the problem of dividing a disputed

territory between several bordering countries, with the constraint that each country should get a piece that
is adjacent to its border.

Berliant et al. (1992); Ichiishi and Idzik (1999); Dall’Aglio and Maccheroni (2009) acknowledge the im-
portance of having nicely-shaped pieces in resolving land disputes. They prove that, if the cake is a sim-
plex in any number of dimensions, then there exists an envy-free and proportional partition of the cake
into polytopes. However, this proof is purely existential when the cake has two or more dimensions. Ad-
ditionally, there are no restrictions on the fatness of the allocated polytopes and apparently these can be
arbitrarily thin triangles. Berliant and Dunz (2004) studies the existence of competitive equilibrium with

4The relation between division procedures and auctions has already been mentioned by Brams and Taylor (1996).
5The two auction types are analogous to the two query types — mark query and eval query — used in the cake-cutting literature

in computer science, e.g. Robertson and Webb (1998); Woeginger and Sgall (2007). In fact, each mark/eval auction can be im-
plemented by n mark/eval queries. Therefore, all our division procedures require O(poly(n)) queries. We prefer to use auctions
because their economic meaning is clearer.
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utility functions that may depend on geometric shape; their nonwasteful partitions assumption explicitly ex-
cludes fat shapes such as squares. Devulapalli (2014) studies a two-dimensional division problem in which
the geometric constraints are connectivity, simple-connectivity and convexity.

Iyer and Huhns (2009) describe a procedure for giving each agent a rectangular plot with an aspect ratio
determined by the agent. Their procedure asks each of the n agents to draw n disjoint rectangles on the map
of the two-dimensional cake. These rectangles are supposed to represent the “desired areas” of the agent.
The procedure tries to give each agent one of his n desired areas. However, it does not succeed unless each
rectangle proposed by an individual intersects at most one other rectangle drawn by any other agent. If
even a single rectangle of Alice intersects two rectangles of George (for example), then the procedure fails
and no agent gets any piece.

In our model (see Section 3.2), the utility functions depend on geometry, which makes them non-
additive. They are not even sub-additive like in the models of Maccheroni and Marinacci (2003); Dall’Aglio
and Maccheroni (2005, 2009). 6 Previous papers about cake-cutting with non-additive utilities can be
roughly divided to two kinds: some (Berliant and Dunz, 2004; Sagara and Vlach, 2005; Hüsseinov and
Sagara, 2013) handle general non-additive utilities but provide only pure existence results. Others (Su,
1999; Caragiannis et al., 2011; Mirchandani, 2013) provide constructive division procedures but only for a
1-dimensional cake. Our approach is a middle ground between these extremes. Our utility functions are
more general than the 1-dimensional model but less general than the arbitrary utility model; for this class
of utility functions, we provide both existence results and constructive division procedures.

Besides fair division problems, geometric methods have been used in many other economics problems,7

such as voting (Plott, 1967), trade theory and growth theory (e.g. Johnson, 1971), tax burdens (Hines et al.,
1995), social choice (Cantillon and Rangel, 2002), mechanism design (Goeree and Kushnir, 2011), public
good/bad allocation (e.g. Öztürk et al., 2013, 2014; Chatterjee et al., 2016), utility theory (Abe, 2012) and
general economics models (Michaelides, 2006).

With square pieces a proportional allocation may not exist, so we have to settle for partial-propor-
tionality. Other goals that justify partial-proportionality are speed of computation (Edmonds and Pruhs,
2006a; Edmonds et al., 2008), improving the social welfare (Zivan, 2011; Arzi, 2012) and guaranteeing a
minimum-length constraint of a 1-dimensional piece (Caragiannis et al., 2011).

3.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal definitions).

• C is the cake to be divided. In this chapter it will usually be a polygon or a polygonal domain in the
Euclidean plane R2.

• S is the family of pieces that are considered usable. An S-piece is an element of S. In this chapter it will
usually be the family of squares or fat rectangles.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece Xi.

• For each agent i ∈ {1, . . . , n}, VS
i (Xi) is agent i’s utility of the piece Xi. It is the value-measure of the

most valuable S-piece contained in Xi.

The fairness of an allocation is determined by the agents’ normalized values. Values can be normalized in
two ways:

• either divide them by the absolute cake value for the agent and get Vi(Xi)/Vi(C),

• or divide them by the relative cake utility for the agent and get Vi(Xi)/VS
i (C).

6Dall’Aglio and Maccheroni (2009) do not explicitly require sub-additivity, but they require preference for concentration: if an
agent is indifferent between two pieces X and Y, then he prefers 100% of X to 50% of X plus 50% of Y. This axiom is incompatible
with geometric constraints: an agent who wants square pieces will give away 100% of a 20× 10 rectangle, in exchange for 50% of
a 20× 20 square that is the union of two such rectangles. We are grateful to Marco Dall’Aglio for his help in clarifying this issue.

7We are thankful to Steven Landsburg, Michael Greinecker, Kenny LJ, Alecos Papadopoulos, B Kay and Martin van der Linden
for contributing these references in economics.stackexchange.com website (http://economics.stackexchange.com/q/6254/385).
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Throughout the chapter absolute normalization is used, except in Subsection 3.5.6 where relative normal-
ization is used.

An allocation is called proportional if the normalized value of every agent is at least 1/n. Example 3.1.1
shows that a proportional allocation is not always attainable (whether absolute or relative normalization is
used). Hence, we define:

Definition 3.2.1. (Absolute proportionality) For a cake C, a family of usable pieces S and an integer n ≥ 1:
(a) The proportionality level of C, S and n, marked Prop(C, S, n), is the largest fraction r ∈ [0, 1] such that,

for every n value measures (Vi, ..., Vn), there exists an S-allocation (X1, ..., Xn) for which ∀i : Vi(Xi)/Vi(C) ≥
r.8

(b) The same-value proportionality level of C, S and n, marked PropSame(C, S, n), is the largest fraction
r ∈ [0, 1] such that, for every single value measure V, there exists an S-allocation (X1, ..., Xn) for which
∀i : V(Xi)/V(C) ≥ r.

The analogous definition for relative proportionality is given in Subsection 3.5.6.
Obviously, for every C, S and n: Prop(C, S, n) ≤ PropSame(C, S, n) ≤ 1/n.
Applying this notation, classic cake-cutting results (e.g. Steinhaus, 1948) imply that for every cake C

Prop(C, All, n) = PropSame(C, All, n) = 1/n

where "All" is the collection of all pieces. That is: when there are no geometric constraints on the pieces,
for every cake C and every combination of n continuous value measures there is a division in which each
agent receives a utility of 1/n, which is the best that can be guaranteed. One-dimensional procedures
with contiguous pieces (e.g. Even and Paz, 1984) prove that Prop(Interval, intervals, n) = 1/n and when
translated to two dimensions they yield:

Prop(Rectangle, rectangles, n) = PropSame(Rectangle, Rectangles, n) = 1/n

However, these procedures do not consider constraints that are two-dimensional in nature, such as square-
ness. Such two-dimensional constraints are the focus of the present chapter.

Our challenge in the rest of this chapter will be to establish bounds on Prop(C, S, n) and PropSame
(C, S, n) for various cake shapes C and piece families S. Two types of bounds are provided:

• Impossibility results (upper bounds), of the form Prop(C, S, n) ≤ f (n) where f (n) ∈ [0, 1], are proved
by showing a set of n value measures on C, such that in any S-allocation, the value of one or more
agents is at most f (n). Such bounds are established in Section 3.3.

• Positive results (lower bounds), of the form Prop(C, S, n) ≥ g(n) where g(n) ∈ [0, 1], are proved by
describing a division procedure which finds, for every set of n value measures on C, an S-allocation
in which the value of every agent is at least g(n). Such bounds are established in Sections 3.4-3.5.

3.3 Impossibility Results

Our impossibility results are based on the following scenario.

• The cake C is a desert with only k water-pools; the set of pools is denoted Pk.

• Each pool in Pk is a square with side-length ε > 0 containing 1 unit of water.

• There are n agents with the same value measure: the value of a piece equals the total amount of water
in the piece. So the value of each pool in Pk is 1 and the total cake value is k.

• We say that a piece Xi is supported by Pk if Xi contains strictly more than 1 unit of water from Pk.
This implies that Xi touches at least two pools of Pk.

• We say that Pk supports m squares if there exists a collection of m pairwise-disjoint squares each of
which contains strictly more than one unit of water from Pk.

8Shortly: Prop(C, S, n) = infV supX mini Vi(Xi)/Vi(C), where the infimum is on all combinations of n value measures
(V1, ..., Vn), the supremum is on all S-allocations (X1, ..., Xn) and the minimum is on all agents i ∈ {1, ..., n}.
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a. Prop(C,Squares,2) ≤ 1/3

x

b. Prop(C,Squares,3) ≤ 1/5

Figure 3.3: Impossibility results in a quarter-plane cake.

a. Prop(C,Squares,2) ≤ 1/4

x

b. Prop(C,Squares,3) ≤ 1/6

Figure 3.4: Impossibility results in a square cake.

The latter definition implies the following lemma:

Lemma 3.3.1. A collection of k pools supports at most k− 1 squares.

Proof. Let Pk be a collection of k pools and suppose that it supports m squares. This means that there exists
a collection of m pairwise-disjoint squares, each of which contains more than one unit of water from Pk.
So the union of these squares contains strictly more than m units of water from Pk. Since each pool in Pk
contains exactly one unit of water, necessarily k ≥ m + 1 so m ≤ k− 1.

In each impossibility result, we present a set Pk and prove that it supports at most n − 1 squares.
This implies that, in every allocation of n pairwise-disjoint squares, at least one agent receives a piece
not supported by Pk — a piece with at most 1 unit of water. The value of this agent is at most a frac-
tion 1/k of the total cake value. This implies that PropSame(C, Squares, n) ≤ 1/k, which implies that
Prop(C, Squares, n) ≤ 1/k.

3.3.1 Impossibility results for two, three and four walls

We start with impossibility results for two agents.

Claim 3.3.1.
PropSame(Quarter plane, Squares, 2) ≤ 1/3

Proof. Let P3 be the set of 3 pools shown in Figure 3.3/a, where the bottom-left corners of the pools are
in (0, 0), (10, 0), (0, 10). Every square in C touching two pools of P3 must contain e.g. the point (6, 6) in
its interior (marked by x in the figure). Hence, every two squares touching two pools of P3 must overlap.
Hence, P3 supports at most one square. Hence, in any allocation of squares to two agents, at least one square
touches at most one pool of P3; the agent receiving such a square has at most 1/3 of the total value.

Claim 3.3.2.

PropSame(Square, Squares, 2) ≤ 1/4

Proof. Analogous to the previous claim, based on the set P4 shown in Figure 3.4/a.

To extend these results to n > 2 agents, we construct new sets of pools by shrinking existing sets into
pools of other sets.

As an example, consider P3 from the proof of Claim 3.3.1. Suppose the entire plane is shrunk (deflated)
towards the origin. If the deflation factor is sufficiently large, all three pools of the shrunk P3 are contained
in [0, ε] × [0, ε], which is a pool of the original P3. The cake itself (the quarter-plane) is not changed by
the deflation. By adding the other two pools of P3, namely (10, 0) and (0, 10), we get a larger pool set, P5,
which is depicted in Figure 3.3/b. We already know that the shrunk P3 supports at most one square. The
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a. Prop(C, Squares, 3) ≤ 1/4

x-x

b. Prop(C, Squares, 5) ≤ 1/7

Figure 3.5: Impossibility result for 3 agents on a half-plane. See Claims 3.3.5-3.3.6.

additional two pools support at most one additional square, since there is at most one square touching two
new pools or a new pool and a shrunk pool. Hence, P5 supports at most two squares. This proves that
PropSame(Quarter plane, Squares, 3) ≤ 1/5. The following claim generalizes this construction.

Claim 3.3.3. For every n ≥ 1:

PropSame(Quarter plane, Squares, n) ≤ 1
2n− 1

Proof. 9It is sufficient to prove that for every n there is an arrangement of 2n− 1 pools in C that supports
at most n− 1 squares. The proof is by induction on n. The base case n = 1 is trivial (and the case n = 2 is
Claim 3.3.1). For n > 2, assume there is an arrangement of 2(n− 1)− 1 pools that supports at most n− 2
squares. Deflate the entire arrangement towards the origin until it is contained in [0, ε]× [0, ε], where ε > 0
is a sufficiently small constant.

Add two new pools with side-length ε cornered at (10, 0) and (0, 10). We now have an arrangement
of 2n − 1 pools. Every square touching a new pool and another pool (either new or old), must contain
e.g. the point (6, 6) in its interior, so every two such squares must overlap. Hence, the additional pools
support at most one additional square. All in all, the new arrangement of 2n− 1 pools supports at most
(n− 2) + 1 = n− 1 squares.

The upper bound for two walls is also trivially true when the cake is a square with three walls, since
adding walls cannot increase the proportionality:

PropSame(Square with 3 walls, Squares, n) ≤ 1
2n− 1

The bound also holds for a square with 4 walls, but in this case a slightly tighter bound is true:

Claim 3.3.4. For every n ≥ 2,

PropSame(Square with 4 walls, Squares, n) ≤ 1
2n

Proof. W.l.o.g. assume C is the square [0, 10 + ε]× [0, 10 + ε]. Create the arrangement of 2(n− 1)− 1 pools
from the induction step of Claim 3.3.3. Deflate it into to [0, ε] × [0, ε]. The shrunk collection supports at
most n− 2 squares. Add three new pools with side-length ε cornered at (10, 0), (0, 10) and (10, 10), as in
Figure 3.4/b. Every square in C touching a new pool and another pool must contain (5, 5) in its interior.
Hence, the three additional pools allow us to support at most one additional square. All in all, the new
arrangement of 2n pools supports at most n− 1 squares.

3.3.2 Impossibility results for one wall

Claim 3.3.5.
PropSame(Hal f plane, Squares, n = 3) ≤ 1/4

Proof. Let P4 be the set of 4 pools shown in Figure 3.5/a. Assume the side-length of each pool is ε ≤ 0.01
and that their bottom-left corner is in (−5, 0), (0, 0), (0, 10), (5, 0). We prove that P4 supports at most 2
squares. Examine the squares in C that touch two pools of P4:

9We are grateful to Boris Bukh for the idea underlying this proof.
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• Every square touching (5, 0) and another pool must contain the point x (4, 4.5) in its interior.

• Every square touching (−5, 0) and another pool must contain the point -x (−4, 4.5).

• Every square touching (0, 0) and another pool must touch either x or -x or both.

Hence, in every set of three squares, each of which touches two pools of P4, at least two squares must
overlap. Hence, P4 supports at most two squares. Hence, in any allocation to three agents, at least one of
them receives at most 1/4 of the total value.

Claim 3.3.6. For every n ≥ 2:

PropSame(Hal f plane, Squares, n) ≤ 1
(3/2)n− 1

Proof. The proof is analogous to that of Claim 3.3.3. With each induction step, the current arrangement of
pools is shrunk towards the central pool at the origin, three new pools are added, but only two new squares
are supported. Hence the coefficient of n is 3/2. The −1 ensures that the right-hand side is a correct upper
bound for every n ≥ 2.

Figure 3.5/b shows the set of 7 pools for the case n = 5.

3.3.3 Impossibility results for zero walls

Finding an impossibility result for an unbounded cake is a challenging task. The main difficulty is that,
when there are no walls, any arrangement of pools can be rotated arbitrarily, as will be explained shortly.

We begin with impossibility results for the restricted case in which the squares must be parallel to a
specific coordinate system. Such a restriction may be meaningful, for example, in the installation of solar
power-plants or the building of houses with electric solar panels, where the positioning relative to the sun
is important.

Claim 3.3.7. Given a fixed coordinate system in the plane:

PropSame(Plane, Axes Parallel Squares, n = 5) ≤ 1/6

Proof. Let P6 be the set of 6 pools: A(0,2.5), B(-3,0), C(-1,0), C’(1,0), B’(3,0), A’(0,-2.5). We prove that P6
supports at most 4 axes-parallel squares. First, consider the squares that touch two pools of P6:

(a) P6 Pools:

B C C’ B’

A

A’

(b) Potential squares:

B C C’ B’

A

A’

We can ignore squares that contain other squares or that contain pools in their interior, since such squares
can be shrunk without interfering with other squares. Hence, any set of supported squares must contain a
subset of the following:

• At most two disjoint "top squares" (squares touching pool A) and two disjoint "bottom squares"
(touching pool A’). Each such square has a side-length of 2.5.
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• At most one "left square" (touching pools B and C), one "right square" (touching pools B’ and C’) and
one "central square" (touching C and C’). Each such square has a side-length of 2 and can be located
anywhere between y = −2 and y = 2. 10

We prove that at most four of these squares can be supported simultaneously. There are two cases:
Case #1: there are no bottom squares. The pool A’ is not used, so only 5 pools are used. By Lemma

3.3.1, these pools can support at most 4 squares. The situation is similar if there are no top squares, since in
this case the pool A is not used.

Case #2: there is at least one bottom square (e.g, a square supported by A’ and C’) and at least one top
square (e.g, supported by A and C). These two squares leave no room for a central square. Hence, there is
room for at most two additional squares: one above the x axis (e.g, supported by A and C’, or C’ and B’),
and one below the x axis (e.g, supported by A’ and C, or C and B).

In all cases, P6 supports at most 4 axes-parallel squares.

Claim 3.3.8. Given a fixed coordinate system in the plane, for every k ≥ 0:

PropSame(Plane, Axes Parallel Squares, n = 5 + 9k) ≤ 1/(6 + 10k)

Proof. We prove that for every k ≥ 0, there exists an arrangement of 6 + 10k pools that supports at most
4 + 9k axes-parallel squares. The proof is by induction on k. The base k = 0 is proved by P6 from Claim
3.3.7. Assume that there exists an arrangement P6+10(k−1) which supports at most 9+ 4k squares. Construct
a new arrangement P6+10k in the following way. Take P6, replace the pool A a with shrunk copy of P6 and
the pool A’ with a shrunk copy of P6+10(k−1). The following illustration shows P16, the arrangement for
k = 1 (the shrunk copies are enlarged for the sake of clarity):

B C C’ B’

B C C’ B’

A

A’

B C C’ B’

A

A’

The number of pools in the new arrangement is 6 + 4 + 6 + 10(k− 1) = 6 + 10k. We claim that it supports
at most 4 + 9k squares:

• The shrunk copy of P6 supports at most 4 squares;

• The shrunk copy of P6+10(k−1) supports at most 4 + 9(k− 1) squares, by the induction assumption;

• The four pools B C C’ B’ in the large P6 support at most 3 large squares;

• If there is a top large square then there is at most one additional large square above the x axis, and if
there is a bottom large square then there is at most one additional large square below the x axis.

All in all, at most 4+ 4+ 9(k− 1) squares are supported by the shrunk copies and at most 3+2=5 additional
large squares are supported by the outer arrangement, so the total number of supported squares is at most
4 + 9k.

In general, every 10 additional pools support at most 9 additional squares. Hence:

PropSame(Plane, Axes Parallel Squares, n) ≤ 1
(10/9)n− 1

≈ 9
10
· 1

n

This implies that any division procedure which works in a pre-specified coordinate system cannot guaran-
tee a proportional division of the plane with square pieces.

10While there can two disjoint squares touching pools B+C, Lemma 3.3.1 implies that the pools B+C can support at most one
square. The same is true for the pools B’+C’ and C+C’.
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In our next results, we relax the axes-parallel restriction and only require that the squares be parallel to
each other. While this is still not the most general setting, it is natural e.g. in urban planning. Equivalently,
we still require that the squares be parallel to the axes, but allow the arrangement of pools to rotate.

Note that the proof of Claim 3.3.7 (Case 2) relies on the fact that any pair of a top-square and a bottom-
square leaves no room for a central square. This follows from the facts that A and A’ lie horizontally
between C and C’, and the horizontal distance between C and C’ is larger than the vertical distance between
B and B’. These facts are still true if the entire arrangement is rotated by at most 18◦ to either direction:11

(a) P6 rotated 18◦:

B

C

C’

B’

A

A’

(b) Potential squares:

B

C

C’

B’

A

A’

For every angle θ, define ParallelSquares[θ] as the family of squares rotated at exactly θ degrees (counter-
clockwise) relative to the axes. Then, the proofs of Claim 3.3.7 and 3.3.8 and the above explanation imply:

Claim 3.3.9. For every θ ∈ [−18◦,+18◦] and every k ≥ 0:

PropSame(Plane, ParallelSquares[θ], n = 5 + 9k) ≤ 1/(6 + 10k)

The arrangement P6+10k "covers" a range of rotation-angles of size 36◦. By using three copies of P6+10k
rotated in different angles, we can cover the entire range of relevant rotation angles. We use this idea to
prove an impossibility result for rotated parallel squares.

Claim 3.3.10. For every k ≥ 0:

PropSame(Plane, ParallelSquares, n = 18 + 29k) ≤ 1/(18 + 30k)

Proof. Construct an arrangement P18+30k from three copies of P6+10k:

• A leftmost copy — rotated by −27◦ and translated by (−300, 0);

• A central copy — not rotated;

• A rightmost copy — rotated by +27◦ and translated by (+300, 0).

The following illustration shows P18 (the construction for k = 0) with the three copies enlarged for the sake
of clarity:

B

C

C’

B’

A

A’

B C C’ B’

A

A’

B

C

C’

B’

A

A’

11The calculation was done using Geogebra (Hohenwarter, 2002; Hohenwarter et al., 2013). The worksheet is available here:
https://tube.geogebra.org/m/zzNY3ag4
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We claim that if P18+30k is rotated by any angle θ ∈ [−45◦, 45◦], then the rotated arrangement supports
at most 18 + 29k axes-parallel squares. Consider three cases:

(a) P18+30k is rotated by θ ∈ [−45◦,−9◦]. Then, the rightmost copy is P6+10k rotated by θ + 27◦ ∈
[−18◦, 18◦], so it supports at most 4 + 9k squares.

(b) P18+30k is rotated by θ ∈ [−18◦,+18◦]. Then the central copy supports at most 4 + 9k squares.
(c) P18+30k is rotated by θ ∈ [+9◦,+45◦]. Then the leftmost copy is P6+10k rotated by θ − 27◦ ∈

[−18◦, 18◦], so it supports at most 4 + 9k squares.
In all cases, one of the copies supports at most 4 + 9k squares. Each of the other two copies has 6 + 10k

pools, so by Lemma 3.3.1 it supports at most 5 + 10k squares. Additionally, between the three copies there
can be at most four (huge) pairwise-disjoint squares: two above and two below the x axis. All in all, the
number of supported squares is at most (4 + 9k) + (5 + 10k) + (5 + 10k) + 4 = 18 + 29k.

Therefore, for any angle θ ∈ [−45◦, 45◦], if the family S of usable pieces is the family of squares rotated
by θ, then P18+30k supports at most 18 + 29k S-pieces. But, any square is identical to a square rotated by
θ ∈ [−45◦, 45◦]. Therefore, the existence of P18+30k proves the claim.

In Claim 3.3.10, for every 30 new pools, at most 29 new squares can be supported. Therefore,

Claim 3.3.11. For every n ≥ 1:

PropSame(Plane, Parallel Squares, n) ≤ 1
(30/29)n− 1

≈ 29
30
· 1

n

3.3.4 Impossibility results with fat rectangles

Our impossibility results so far have assumed that S is the family of squares. One could think that allowing
fat rectangles, instead of just squares, can overcome these impossibility results. But this is not necessarily
true. Claim 3.3.1 holds as-is for R-fat rectangles:

Claim 3.3.12. For every finite R ≥ 1:

PropSame(Quarter plane, R f at rectangles, 2) ≤ 1/3

Proof. Let P3 be the arrangement of 3 pools from the proof of Claim 3.3.1:

x

x

x

The side-length of each pool is ε > 0. Every R-fat rectangle touching the two bottom pools must have a
height of at least (10− 2ε)/R and thus, when ε is sufficiently small, it must contain the point (5/R, 5/R)
and the point (10− 10/R, 5/R). Every R-fat rectangle touching the two left pools must contain the point
(5/R, 5/R) and the point (5/R, 10− 10/R). Every R-fat rectangle touching the top-left and the bottom-
right pools must contain (10− 10/R, 5/R) and (5/R, 10− 10/R). Hence, in every allocation of disjoint
R-fat rectangles, at most one rectangle touches two or more pools.

Claim 3.3.3 is based on Claim 3.3.1, so it holds as-is for R-fat rectangles. The same is true for the 3-walls
result. The 1-wall claims 3.3.5 and 3.3.6 can be generalized in a similar way:

We omit the details. We obtain:

Claim 3.3.13. For every R ≥ 1:
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PropSame(Square with 1 wall, R f at rectangles, n) ≤ 1
(3/2)n− 1

PropSame(Square with 2 walls, R f at rectangles, n) ≤ 1
2n− 1

PropSame(Square with 3 walls, R f at rectangles, n) ≤ 1
2n− 1

Claims 3.3.2 and 3.3.4 hold whenever R < 2, since in this case, every R-fat rectangle touching one of the
corner-pools must contain the central point of the cake in its interior, as shown below:

x x

This gives:

Claim 3.3.14. For every R such that 1 ≤ R < 2:

PropSame(Square with 4 walls, R f at rectangles, n) ≤ 1
2n

When R ≥ 2, the following slightly weaker result follows immediately from Claim 3.3.13 (since adding
walls cannot increase the proportionality):

Claim 3.3.15. For every R ≥ 2: 12

PropSame(Square with 4 walls, R f at rectangles, n) ≤ 1
2n− 1

The impossibility results for an unbounded plane are different for R-fat rectangles. Consider first Claim
3.3.7, which assumes that the pieces must be axes-parallel. When the pieces have to be squares, the set P6
supports at most 2 pieces above the x axis and 2 pieces below the x axis. But when the pieces may be R-fat
rectangles and R ≥ 2.5, it is possible to support 3 pieces above or below the x axis, e.g:

B C C’ B’

A

A’

The impossibility result can be maintained by locating the pool A at (2.5R, 0) instead of (2.5, 0), and the
pool A′ at (−2.5R, 0) instead of (−2.5, 0):

12By classic cake-cutting protocols, PropSame(Square, ∞ f at rectangles, n) = 1/n (an ∞-fat rectangle is just an arbitrary rectan-
gle). The PropSame function is thus discontinuous at R = ∞. If the agents agree to use any rectangular piece, they can receive
their proportional share of 1/n, but if they insist on using R-fat rectangles, even when R is very large, they might have to settle
for about half of this share.
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B C C’ B’

A

A’

So Claim 3.3.7, and hence Claim 3.3.8, are valid for R-fat rectangles, and we obtain:

Claim 3.3.16. Given a fixed coordinate system in the plane, for every R ≥ 1:

PropSame(Plane, Axes Parallel R f at rectangles, n) ≤ 1
(10/9)n− 1

However, the angle-range in which Claim 3.3.16 holds is no longer [−18◦, 18◦] — the range becomes
smaller as a (complicated) function of R. This means that more copies may be needed to "cover" the en-
tire range of [−45◦, 45◦]. Therefore, the upper bound for parallel squares will probably be a complicated
function of R. We leave this issue for future work.

3.4 Auctions and Covers

Our cake-cutting procedures are composed of two types of auctions. In a mark auction, each agent bids
by marking a piece of the cake; the winner is the agent marking the smallest piece. In an eval auction,
each agent bids by declaring a value for a pre-specified piece of cake; the winners are the agents declaring
the highest value. As usual in the cake-cutting literature, no monetary transfers are involved; the agents
effectively ’pay’ with their entitlements for a share of the cake. Below we explain each auction type in
detail.

3.4.1 Mark auction

In a mark auction, the divider specifies a geometric constraint and a value v. Each agent has to mark a piece
of the cake which satisfies the geometric constraint and is worth for him exactly v. The geometric constraint
guarantees that the marked pieces are totally ordered by containment (i.e. for every two agents i, j, the bid
of i either contains or is contained in the bid of j). Hence, there is a smallest bid — a bid contained in all
other bids. There can be more than one smallest bid; in this case, one smallest bid is selected arbitrarily. The
agent making the selected smallest bid is the winner; he is allocated his bid and goes home. The remaining
cake is divided among the remaining n− 1 agents.

Example 3.4.1. Dividing a rectangle to rectangles. The cake C is a rectangle and S is the family of rectan-
gles. We normalize the valuations of all agents such that the value of the entire cake is n. We show how a
sequence of mark auctions can be used to give each agent a rectangle with a value of at least 1.

The proof is by induction on the number of agents n. When n = 1, C can just be given to the single
agent. Suppose we already know how to divide a rectangle to n− 1 agents who value it as n− 1. Now we
are given n agents who value the cake as n. We do a mark auction with the following geometric constraint:
mark a rectangle whose rightmost edge coincides with the rightmost edge of C. The auction value is v = 1.
The continuity of the valuations guarantees that all agents can indeed bid as required, and the geometric
constraint guarantees that the bids are totally ordered by containment. An example is illustrated below,
where there are four bids marked by dotted lines:
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the winning bid — the smallest rectangle — is marked by a thick dotted line. The winner is given his bid,
so he now has a rectangle with a value of exactly 1, as required (recall that our guarantees are valid for
every agent bidding truthfully, regardless of what the other agents do). Since the n− 1 losing bids contain
the winning bid, the n− 1 losers value the winning bid as at most 1. By additivity, they value the remaining
cake as at least n− 1. Hence, by the induction assumption we can divide the remaining cake among them
in a similar way, finally giving each agent a rectangle with a value of at least 1.13

A mark auction has the following interpretation. Initially, each agent holds an entitlement for a piece of
cake. An agent bidding a piece Xi is interpreted as saying "I am willing to give my entitlement in exchange
for piece Xi". The agent marking the smallest piece is effectively offering the highest "price" per unit area;
hence this agent is the winner. He pays for the win by giving up his entitlement and leaving the remaining
cake to the remaining agents.

3.4.2 Eval auction

In an eval auction, the divider specifies a piece of cake C′ ⊂ C. Each agent i has to declare the value Vi(C′).
The agents are ordered in a descending order of their bids, such that V1(C′) ≥ V2(C′) ≥ · · · ≥ Vn(C′). The
procedure calculates the number of winners n′ (we explain shortly how this number is calculated). The n′

highest bidders, 1, . . . , n′, are the winners. The remaining n− n′ agents are the losers. The procedure then
divides C′ among the winners and C \ C′ among the losers.

To calculate the number of winners n′, we should already have a plan for dividing C′ among each
possible number of winners n′ ≤ n. Specifically, we should have a procedure for dividing C′ among n′

agents, each of whom values C′ as at least F(n′) (where F is some increasing function), such that each agent
is guaranteed a piece with a value of at least 1. Assuming that we have such a procedure, the number of
winners is defined as the largest integer n′ such that:

Vn′(C′) ≥ F(n′)

or 0 if already V1(C′) < F(1). Since Vn′(C′) is a decreasing sequence, the definition implies that:

• For every winner i ∈ {1, . . . , n′}: Vi(C′) ≥ F(n′)

• For every loser i ∈ {n′ + 1, . . . , n}: Vi(C′) < F(n′ + 1)

(this is true even when n′ = 0). Hence, the set of winners is a largest set of agents for whom we can divide
C′ in a way which guarantees each of them a value of at least 1.

Example 3.4.2. Dividing an archipelago to rectangles. The cake C is an "archipelago" — a union of m
disjoint rectangular "islands". S is the family of rectangles. We normalize the valuations of all agents such
that the value of the entire archipelago is n + m− 1. We show how a sequence of eval auctions can be used
to give each agent a rectangle, contained in one of the islands, with a value of at least 1.

The proof is by induction on the number of islands m. When m = 1, C is a single rectangle and all
agents value it as at least n, so the procedure of Example 3.4.1 can be used to give each agent a rectangle
with a value of at least 1. Suppose we already know how to divide an archipelago of m− 1 islands. Given
an archipelago of m islands, pick one island arbitrarily and call it C′. Do an eval auction on C′. Order the
bids in descending order, and let n′ be the largest index such that:

Vn′(C′) ≥ n′

or 0 if already V1(C′) < 1. If n′ = 0 then just discard C′; otherwise use the procedure of Example 3.4.1 to
divide C′ among the n′ winners. By definition, each winner values C′ as at least n′ so he is guaranteed a
rectangular piece of C′ with a value of at least 1.

All n − n′ losers value C′ as less than n′ + 1, so they value the remaining archipelago C \ C′ as more
than (n + m− 1)− (n′ + 1) = (n − n′) + (m− 1)− 1. This is an archipelago of m − 1 islands, so by the
induction assumption we can divide it among the remaining n− n′ agents giving each agent a rectangle
with a value of at least 1. Note that this is true even when n′ = 0.14

13Example 3.4.1 shows that Prop(Rectangle, Rectangles, n) = 1/n. This result is not new since it follows immediately from
known results on 1-dimensional cake-cutting. It is presented here to show that it fits well into the auction framework.

14Example 3.4.2 shows that Prop(m disjoint rectangles, Rectangles, n) ≥ 1/(n + m− 1). It is easy to construct an arrangement
of pools, analogous to the ones in Section 3.3, proving that this is the best proportionality that can be guaranteed.
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3.1× 1 rectangle:
CoverNum(C,squares)=4

L-shape:
CoverNum(C,squares)=3

L-shape:
CoverNum(C,rectangles)=2

T-shape:
CoverNum(C,squares)=3

Figure 3.6: Cover numbers of various polygons.

An eval auction has the following interpretation. Initially, each agent has an entitlement to share the
entire cake C with n agents (including the agent himself). An agent bidding a value V is interpreted as
saying "I am willing to give my entitlement in exchange for an entitlement to share C′ with at most n′

agents, where n’ is the largest integer such that V ≥ F(n′)." The agents with the highest bids are actually
offering a higher "price" for C′, since they are willing to share C′ with a larger number of other agents.
Hence, the highest bidders are the winners. They pay for their win by giving up their entitlement to C \ C′

and leaving it to the remaining agents.

3.4.3 Cover numbers

The last ingredient we need for our division procedures, in addition to the two auction types, is the cover
number. It is a well-known concept in computational geometry (see Keil (2000) for a survey).

Definition 3.4.3. Let C be a cake and S a family of pieces.
(a) An S-cover of C is a set of S-pieces, possibly overlapping, whose union equals C.
(b) The S-cover number of C, CoverNum(C, S), is the minimum cardinality of an S-cover of C.

Some examples are depicted in Figure 3.6.
The cover number is related to the utility that a single agent can derive from a given cake:

Lemma 3.4.4. (Covering Lemma) For every cake C and family S:

Prop(C, S, n = 1) ≥ 1
CoverNum(C, S)

Proof. Let k = CoverNum(C, S) and let {C1, ..., Ck} be an S-cover of C. By definition ∪k
j=1Cj = C. By

additivity, if an agent’s valuation function is V, then:

k

∑
j=1

V(Cj) ≥ V(C)

so the average value of the left-hand side is at least V(C)/k. By the properties of the average, at least one
summand must be weakly larger than the average value, i.e, there exists j for which V(Cj) ≥ V(C)/k. This
Cj, which is an S-piece, gives the single agent a utility of at least 1/k of the total cake value.

The next example combines an eval auction, a mark auction and the Covering Lemma.

Example 3.4.5. Dividing a square between two agents who want square pieces. The cake C is a square, S
is the family of squares and there are n = 2 agents. Example 3.1.1 shows that the maximum utility that can
be guaranteed to both agents is 1/4 of the total value. We now present a division procedure that guarantees
this utility. We normalize the valuations of both agents such that their value of C is 4 and give each agent
a square with a value of at least 1.

Partition the cake to a 2× 2 grid. Denote one of the four quarters as C′, e.g.:

C′
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Do an eval auction on C′. Let n′ be the number of agents whose bid is at least 1.
Case #1: n′ = 0 (both agents value C′ as less than 1). Denote another quarter as C′ and do an eval

auction again. Because the total cake value is 4, this can happen at most three times; eventually one of the
other cases must happen.

Case #2: n′ = 1. The single agent who values C′ as at least 1 wins C′ and goes home. The losing agent
values C′ as less then 1 so he values C \C′ as more than 3. C \C′ is a union of 3 squares, so by the Covering
Lemma the losing agent can get from it a square with a value of at least 1.

Case #3: n′ = 2. Do a mark auction with the following constraint: mark a square with a value of 1 contained
in C′ and adjacent to a corner of C. Both agents can bid as required, since they value C′ as at least 1 so they
have a square with a value of exactly 1 inside C′. An example is illustrated below, where the two bids are
marked by dotted lines:

The winning bid (the smallest square) is marked with thicker dots. It is given to the winner, who walks
home with a square worth 1. The remaining cake is an L-shape similar to the one in Figure 3.6. Its cover
number is 3 and its value for the loser is at least 3. By the Covering Lemma, it contains a square whose
value to the loser is at least 1.15 The final allocation may look like:

The fairness of this allocation is evident: both agents agree that the south-west is the most valuable district,
so the agent who has to go to a less valuable district is compensated by a larger plot.

Note that some land remains unallocated. This is unavoidable if the pieces have to be square. Moreover,
in realistic land-division scenarios it is common to leave some land unallocated and available for public
use.

3.5 Division procedures

In this section we use the building-blocks developed in Section 3.4 to create various division procedures.

3.5.1 Four and three walls, guillotine cuts

We develop simultaneously a pair of division procedures. Both procedures accept a cake C which is as-
sumed to be the rectangle [0, L]× [0, 1], and return n disjoint square pieces {Xi}n

i=1 such that for every agent
i: Vi(Xi) ≥ 1.

The two procedures differ in their requirement on L (the length/width ratio of the cake) and in the
number of “walls” (bounded sides) they assume on the cake:

• The 3-walls procedure requires that L ∈ [0, 1] and it guarantees that the allocated squares are contained
in [0, ∞]× [0, 1] (in other words, there is no wall in the rightmost edge of the cake).

• The 4-walls procedure requires that L ∈ [1, 2] (i.e, the cake is a 2-fat rectangle) and it guarantees that all
allocated squares are contained in C.

Additionally, the two procedures differ in their requirement on the total cake value:

• The 3-walls procedure requires that for every agent i: Vi(C) ≥ max(1, 4n− 5).

• The 4-walls procedure requires that for every agent i: Vi(C) ≥ max(2, 4n− 4).

15Combining the lower bound proved by Example 3.4.5 with the upper bound proved by Claim 3.3.2 gives a tight result for two
agents: Prop(Square, Squares, n = 2) = 1/4.
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The procedures are developed by induction on the number of agents. We first consider the base case in
which there is a single agent (n = 1).

In the 3-walls procedure, the single agent values C as at least 1. The square [0, 1]× [0, 1] contains all the
value of C and it is contained within its three walls, so it can be given to the single agent:

0 L

In the 4-walls procedure, the single agent values C as at least 2. The requirement on L guarantees that
the cake can be covered by at most 2 squares:

0 L

Hence, by the Covering Lemma, the single agent can be given a square with a value of at least 1.
We now assume that we can handle any number of agents less than n. Given n agents (n ≥ 2), we

proceed as follows.

3 Walls procedure

At this point, there are n ≥ 2 agents who value the cake as at least 4n− 5.
(1) Mark auction. Ask each agent to mark a rectangle with a value of exactly 1 adjacent to the rightmost

edge of the cake (the edge without the wall):

x∗0 L

The winning bid (marked by thicker dots above) is a rectangle [x∗, L]× [0, 1]. There are two cases:

• Easy case: x∗ ≥ 1/2. Make a vertical guillotine cut at x∗. Give to the winner the square [x∗, x∗ + 1]×
[0, 1]. This square contains the winning bid, so its value for the winner is at least 1. The remaining
cake is a 2-fat rectangle and its value for the remaining n− 1 agents is at least V(C)− 1 ≥ 4n− 6 ≥
max(2, 4(n− 1)− 4). Use the 4 walls procedure to divide the remainder among the losers.

• Hard case: x∗ < 1/2. Now we cannot let the winner have the winning bid, since the remainder will
be too thin for the remaining agents. Our solution relies on the following observation: the fact that
x∗ < 1/2 means that all agents value the rectangle [1/2, L]× [0, 1] as less than 1. Therefore, they value
the rectangle [0, 1/2]× [0, 1] as at least 4n− 6. Since all agents believe that this "far left" rectangle is
so valuable, we are going to do an eval auction inside it.

(2) Eval auction. Let C′ = [0, 1/2]× [1/2, 1] and C′′ = [0, 1/2]× [0, 1/2]:
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0 L1/2

C′

C′′

Do an eval auction on C′. Order the agents in a descending order of their bid, V1(C′) ≥ · · · ≥ Vn(C′), and
let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 5, 1)

If n′ = n then all agents value C′ as the entire cake, so the other parts of the cake can be discarded and the
division procedure can start again with C′ as the cake. Hence, we assume that n′ < n. There are two main
cases to consider:

• Easy case: 1 ≤ n′ ≤ n − 2. Make a horizontal guillotine cut between C′ and C′′. Use the 3-walls
procedure to divide C′ among the n′ winners.

The losers value C′ as less than max(4(n′ + 1) − 5, 1) = 4n′ − 1. At this point all agents value the
rectangle C′ ∪ C′′ as at least 4n − 6; hence, all losers value C′′ as at least (4n − 6) − (4n′ − 1) =
4(n− n′)− 5. Since n− n′ ≥ 2, this value is also larger than 1, so we can use the 3-walls procedure to
divide C′′ among the n− n′ losers.

Note that no square is allocated to the right of the line x = 1/2, so we can assume that the rightmost
border of both C′ and C′′ is open and use the 3-walls procedure to divide them.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1, so they value C′′ as at least 4n− 7.
Now we have a problem: we cannot give C′ even to a single agent since it is not sufficiently valuable,
but we also cannot divide C′′ among all n agents since it too is not sufficiently valuable.

Our solution is to shrink C′′ towards the corner, until one of the agents decides that it is better to take
a piece outside C′′ and leave C′′ to the remaining n− 1 agents. This solution is implemented using a
mark auction, which is described in detail in step (3) below. But before proceeding there is one more
case that must be handled:

• Mixed case: n′ = n− 1. This is handled according to the bid of the single losing agent (agent n): if
Vn(C′) < 4n− 7, then the losing agent values C′′ as at least 1, so we can proceed as in the Easy case
(the winning agents receive C′ and the losing agent receives C′′). Otherwise, Vn(C′) ≥ 4n− 7, so all
agents value C′ as at least 4n− 7 (because the agents are ordered in descending order of their bid).
Switch the roles of C′ and C′′ (e.g. by reflecting the cake about the line y = 1/2), and proceed as in
the hard case to the next auction.

(3) Mark auction. Ask each agent to mark an L-shape with a value of exactly 2, the complement of
which is a square inside C′′ with a value of 4n− 7 cornered at the corner of C, like this:

0 L

X

Let X be the winning bid. X can be covered by two overlapping pieces: a square near the top-left corner of
C (denoted by Y below) and a square overlapping the right edge of C (denoted by Z below):
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0 L

Y

Z

Y

C \ X

At least one of these squares must have a value of at least 1 to the winner. If Y has value 1 then give Y
to the winner and leave Z unallocated; otherwise, give Z to the winner, leave Y unallocated and rotate C
clockwise 90◦. In both cases, C \ X can be separated from the piece given to the winner using a horizontal
guillotine cut. Moreover, in both cases the cake to the right of C \ X is unallocated. The remaining n− 1
agents value C \ X as at least (4n − 5) − 2, which is more than max(1, 4(n − 1) − 5). Use the 3 walls
procedure to divide C \ X among them.

4 Walls procedure

At this point, there are n ≥ 2 agents who value the cake as at least 4n− 4.
The 4-walls procedure is similar to the 3-walls procedure except that it has one additional eval auction

at the beginning. If this auction succeeds, then it effectively cuts the cake to two halves each of which is
a 2-fat rectangle, so each half can be divided recursively using the 4-walls procedure. If this auction fails
(as will be explained below), then the situation is similar to the 3-walls procedure and we can use a similar
sequence of three auctions.

(0) Eval auction. Let C′ = [L/2, 1]× [0, 1] = the rightmost half of C. Note that both C′ and its comple-
ment are 2-fat rectangles:

0 LL/2

C \ C′ C′

Do an eval auction on C′. Order the agents in a descending order of their bid, V1(C′) ≥ · · · ≥ Vn(C′), and
let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 4, 2)

If n′ = n then for all agents Vi(C′) = Vi(C), so C \ C′ can be ignored and the procedure can be restarted
with C′ as the entire cake. Hence, there are two non-trivial cases to consider:

• Easy case: 1 ≤ n′ ≤ n − 2. Make a vertical guillotine cut between C′ and C \ C′. Use the 4-walls
procedure to divide C′ among the n′ winners. This is possible since C′ is a 2-fat rectangle and all
winners value it as at least max(4n′ − 4, 2).

The losers value C′ as less than max(4(n′ + 1)− 4, 2) = 4n′, so they value the remaining half C \ C′

as more than (4n− 4)− 4n′ = 4(n− n′)− 4. Since n− n′ ≥ 2, this value is also larger than 2. Use
the 4-walls procedure to divide C \ C′ among the n− n′ losers; this is possible since C \ C′ is a 2-fat
rectangle and all losers value it as at least max(4(n− n′)− 4, 2).

• Hard case: n′ = 0. This means that all agents value C′ as less than 2 so they value the remainder C \C′

as at least 4n − 6. We are going to enlarge C′ leftwards, until it becomes sufficiently valuable such
that some agent is willing to accept it. We implement this solution using a mark auction, described in
step (1) below. But beforehand, one more case must be handled:

• Mixed case: n′ = n− 1. This case is handled according to the bid of the losing agent: if Vn(C′) < 4n− 6,
then the losing agent values C \ C′ as at least 2, so we can proceed as in the Easy case (the winning
agents receive C′ and the losing agent receives C \ C′). Otherwise, Vn(C′) ≥ 4n − 6, so all agents
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value C′ as at least 4n− 6. Switch the roles of C′ and C \ C′ (e.g. by reflecting the cake C about the
line x = L/2), and proceed as in the hard case to the next auction.

(1) Mark auction. Ask each agent to mark a rectangle with a value of exactly 2 adjacent to the rightmost
edge of C:

x∗0 L

The smallest rectangle wins. Let x∗ be the x coordinate of its leftmost edge, so the winning bid is [x∗, L]×
[0, 1]. Since all agents value C′ as less than 2, all bids must contain C′, so x∗ ≤ L/2. There are two cases:

• Easy case: x∗ ≥ 1/2. Make a vertical guillotine cut at x∗. Both the winning bid and its complement
are 2-fat rectangles. By the Covering Lemma, the winner can be allocated from its bid a square with a
value of at least 1. The n− 1 losers value the remaining cake, [0, x∗]× [0, 1], as at least 4n− 6, which
is at least max(2, 4(n − 1) − 4). Hence, the 4-walls procedure can be used to divide the remainder
among the losers.

• Hard case: x∗ < 1/2. Now we cannot let the winner have the winning bid, since the remainder will
be too thin for the remaining agents. But we know that all agents value the rectangle [1/2, L]× [0, 1]
as less than 2 so they value the rectangle [0, 1/2]× [0, 1] as at least 4n− 6. Since all agents believe that
this rectangle is so valuable, we are going to do an eval auction inside it.

(2) Eval auction. Let C′ = [0, 1/2]× [1/2, 1] and C′′ = [0, 1/2]× [0, 1/2]:

0 L1/2

C′

C′′

Do an eval auction on C′ and let n′ be the largest integer with:

Vn′(C′) ≥ max(4n′ − 5, 1)

As in step (0), the case n′ = n is trivial and can be ignored. There are two non-trivial cases:

• Easy case: 1 ≤ n′ ≤ n − 2. Make a horizontal guillotine cut between C′ and C′′. Use the 3-walls
procedure to divide C′ among the n′ winners. The 3-walls procedure might allocate pieces that flow
over the right boundary of C′ (the line x = 1/2). This does not cause any problem because the
side-length of these rectangles is at most 1/2, so they are still contained in the original cake C.

The losers value C′ as less than max(4(n′ + 1)− 5, 1) = 4n′ − 1. At this point of the procedure, all
agents value the rectangle C′ ∪ C′′ as at least 4n− 6; hence, all losers value C′′ as at least (4n− 6)−
(4n′ − 1) = 4(n− n′)− 5. Since n− n′ ≥ 2, this value is also larger than 1, so we can use the 3-walls
procedure to divide C′′ among the n− n′ losers.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1 and value C′′ as at least 4n− 7. We
are going to "shrink" C′′ using a mark-auction in step (3). But beforehand we handle the remaining
case:

• Mixed case: n′ = n− 1. Proceed according to the bid of the losing agent: if Vn(C′) < 4n− 7, then the
losing agent values C′′ as at least 1, so we can proceed as in the Easy case (the winning agents receive
C′ and the losing agent receives C′′). Otherwise, Vn(C′) ≥ 4n− 7, so all agents value C′ as at least
4n− 7. Switch the roles of C′ and C′′, and proceed as in the hard case to the next auction.
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(3) Mark auction. Ask each agent to mark an L-shape with a value of 3, whose complement is a square
inside C′′ cornered at the corner of C, like this:

0 L

X

Since all agents value C′′ as at least 4n− 7 = (4n− 4)− 3 they can indeed bid as required. Let X be the
winning bid. X is an L-shape that can be covered by two overlapping pieces: a square near the top-left
corner of C (denoted by Y below) and a rectangle near the right edge of C (denoted by Z below):

0 L

Y
Z

Y

C \ X

Since the winner values X as 3, at least one of the following must hold:

• The winner values Y as at least 1; if this is the case then the winner receives Y, and Z remains unallo-
cated.

• The winner values Z as at least 2; if this is the case then the winner selects a square from Z with a
value of at least 1 (this is possible by the Covering Lemma since Z is a 2-fat rectangle), and Y remains
unallocated. If this is the case, then rotate C clockwise 90◦.

In both cases, C \ X can be separated from the piece given to the winner using a horizontal guillotine cut.
In both cases, the cake to the right of C \ X is unallocated. The n− 1 losers value X as at most 3 so they
value C \ X as at least (4n− 4)− 3, which is at least max(1, 4(n− 1)− 5). Therefore, the 3 walls procedure
can be used to divide C \ X among them.

The above pair of procedures prove the following pair of positive results ∀n ≥ 2:

Prop(2 f at rectangle with all sides bounded, Squares, n) ≥ 1
4n− 4

Prop(Rectangle with a long side unbounded, Squares, n) ≥ 1
4n− 5

Since a square is a 2-fat rectangle:

Prop(Square with 4 walls, Squares, n) ≥ 1
4n− 4

Prop(Square with 3 walls, Squares, n) ≥ 1
4n− 5

Fat rectangle pieces

When the pieces are allowed to be R-fat rectangles, the above lower bounds are of course still true, since
a square is an R-fat rectangle. But when R ≥ 2, the 4-walls division procedure can give slightly stronger
guarantees — the required value is max(1, 4n− 5) instead of max(2, 4n− 4) (this is analogous to the fact
that in Subsection 3.3.4, when the pieces are allowed to be R-fat rectangles with R ≥ 2, our upper bound
for a cake with 4 walls is slightly weaker — the denominator is 2n− 1 instead of 2n). The required modifi-
cations are briefly explained below:

• In the base case (n = 1), since the cake is 2-fat, the single agent can have it all, so it is sufficient that
its value be 1.
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Figure 3.7: A staircase with T = 3 teeth marked by discs (Left). It has T + 1 = 4 corners and can be covered
by 4 squares (Right).

• In step (0), after the Eval auction, n′ is the largest integer with Vn′(C′) ≥ max(4n′ − 5, 1). In the easy
case, the n′ winners value their share C′ as at least max(4n′ − 5, 1) and the n− n′ losers value their
share C \C′ as at least max(4(n− n′)− 5, 1), so each part can be divided recursively using the 4-walls
procedure. In the hard case, all agents value C′ as less than 1 so they value the remainder C \ C′ as at
least 4n− 6; proceed to the next step.

• In step (1), the Mark auction asks each agent to mark a rectangle with a value of exactly 1 adjacent
to the rightmost edge of C. In the easy case, both the winning bid and its complement are 2-fat
rectangles. The winning bid can be given entirely to the winner; the n− 1 losers value the remaining
cake as at least 4n− 6, which is at least max(1, 4(n− 1)− 5), so the 4-walls procedure can be used to
divide the remainder among them. In the hard case, all agents value the rectangle [1/2, L]× [0, 1] as
less than 1 so they value the rectangle [0, 1/2]× [0, 1] as at least 4n− 6; proceed to the next step.

• In step (2), the Eval auction proceeds exactly as in the case of square pieces. The values are sufficient
for using the 3-walls procedure.

• In step (3), the Mark auction asks each agent to mark an L-shape with a value of exactly 2. Let X be
the winning bid. Since the winner values X as 2, he values either its topmost part or its rightmost
part as at least 1; both these parts are 2-fat rectangles so the winner can pick one of them and get a fair
share. In both cases, C \ X (which is a square) can be separated from the piece given to the winner
using a horizontal guillotine cut. In both cases, the n− 1 losers value X as at most 2 so they value
C \ X as at least (4n− 5)− 2, which is at least max(1, 4(n− 1)− 5). Therefore, the 3 walls procedure
can be used to divide C \ X among them.

• The 3-walls procedure remains unchanged.

So for every n ≥ 2 and R ≥ 2:

Prop(2 f at rectangle with all sides bounded, R f at rectangles, n) ≥ 1
4n− 5

3.5.2 Two walls

We present a division procedure for dividing the top-right quarter-plane, i.e, the cake is a square with two
walls and two unbounded sides. We would like to do a mark auction in which each agent is asked to mark
a square adjacent to the bottom-left corner. Then, the smallest square should be allocated to its bidder and
the remaining cake should be divided among the remaining agents. However, when we try to do this we
run into trouble, as the remaining cake is no longer a quarter-plane.

As it often happens, the solution is to generalize the problem. Instead of dividing a quarter-plane, we
divide a rectilinear polygonal domain unbounded in two directions, which for brevity we call “staircase” because
of its shape (see Figure 3.7).

Each staircase has vertexes with inner angle 90◦ and vertexes with inner angle 270◦; we call the former
corners and the latter teeth.16 A staircase with T teeth has T + 1 corners. A quarter-plane is a staircase with
T = 0 teeth.

16Other common names are convex vertexes vs. concave/reflex vertexes, or inner corners vs. outer corners.
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Figure 3.8: The square at corner 4 is entirely contained in the corner (left). After it is allocated, the remain-
ing cake is a staircase with 4 teeth and 5 corners (right).

By putting the arrangement of Claim 3.3.3 in one of the corners and adding a pool in each of the other
T corners, the following upper bound is obtained:

Prop(T staircase, Squares, n) ≤ 1
2n− 1 + T

We normalize the valuations of all agents such that the value of the entire cake is 2n − 1 + T. We use a
sequence of mark auctions to give each agent a square with a value of at least 1.

We proceed by induction on the number of agents n. When n = 1, the cake value for the single agent
is at least T + 1. The cake can be covered by T + 1 sufficiently large squares — one square per corner (see
Figure 3.7/Right). By the Covering Lemma, the agent can get a square with a value of at least 1.

Suppose we already know how to divide a T-staircase to n− 1 agents, for every integer T ≥ 0. Now
there are n agents. Start by doing T + 1 mark auctions: for each corner j ∈ {1, . . . , T + 1}, ask each agent
to mark a square with a value of exactly 1 adjacent to corner j. If the total value of the agent in corner j is
less than 1, then the agent is allowed to not participate in that auction, or equivalently mark a square with
an infinite side-length. By the Covering Lemma, each agent can mark at least one finite square.

In each corner, the "corner-winning-bid" is the smallest square (contained in all other bids in that cor-
ner). We now have T + 1 corner-winners, and we have to select a single global-winner. There are two
cases.

Easy case: there is a j ∈ {1, . . . , T + 1} such that the corner-j winning-bid is smaller than the two edges of
C adjacent to corner j. An example is the square in corner 4 in Figure 3.8. Select one such square arbitrarily
as the global "winning bid". Give the winning bid to its bidder. The remaining cake is a staircase with
T + 1 teeth (see Figure 3.8). The n− 1 losing agents value the allocated square as at most 1, so they value
the remaining staircase as at least (2n− 1 + T)− 1 = 2(n− 1)− 1 + (T + 1). Hence, by induction we can
divide the remainder among the losers.

Hard case: all corner-winning-bids are larger than the edges adjacent to their corners, as in Figure 3.9.
Now, when a square is allocated, the remainder is no longer a staircase. In order to restore the staircase
shape, we have to remove an additional part of C. We do this by cutting, from the top-right corner of the
allocated square, a straight line downwards to the bottom boundary of C, and a straight line leftwards
to the leftmost boundary of C. The parts of C that are removed besides the allocated square are called
the shadows of the square. An example is illustrated in Figure 3.9, where the square at corner 2 has two
shadows denoted by dotted lines.

We now need the following geometric lemma, which is formally stated and proved in Appendix 3.A:

Lemma 3.5.1. (Staircase Lemma) Given a staircase in which a square is located in each corner, there exists a square
whose shadows are contained in the union of the other squares.

Based on the Staircase Lemma, we proceed as follows. From the T + 1 corner-winning-bids, select one
square whose shadows are contained in the other squares (e.g. the square in corner 2 in Figure 3.9). Declare
this square as the global winning square, give it to its bidder, and remove its shadows from C.

We have to prove that the remaining cake is sufficiently valuable for each losing agent. The number
of agents changes by ∆n = −1 since the winning agent leaves. The cake value for a losing agent changes
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(x∗ , y∗)
1’

2’ (x∗ + l∗ , y∗ + l∗)

4

Figure 3.9: The square at corner 2 (second from the bottom-right) satisfies the Staircase Lemma, since its
"shadows" (dotted) are contained in the other squares. After it is allocated, the remaining cake is a staircase
with 2 teeth and 3 corners (right).

by ∆V (a negative quantity). The number of teeth changes by ∆T which may be positive or negative.
Looking at the value requirement V ≥ 2n + T − 1, we see that in order to use the induction assumption, it
is sufficient to prove that for every loser:

∆V ≥ 2∆n + ∆T = ∆T − 2

I.e, the value of the remaining agents should drop by at most two units, plus one unit for each removed
tooth.

The shadows of the winning square can be partitioned to m disjoint rectangular components, to its top-
left and to its bottom-right, such that each component is located in a different corner (e.g. in Figure 3.9,
m = 2). After the shadows are removed, m teeth disappear. One tooth is added at the top-right of the
winning square. Hence, ∆T = 1−m.

The winning square is worth at most 1 for the remaining agents, since it is contained in all other squares
in its corner. By the selection of the global-winning-bid, each of the m shadows is contained in a corner-
winning-bid, so its value for the losing agents is at most 1. Hence, the total value of the removed region
to the n − 1 losers is at most m + 1, so ∆V ≥ −1− m = ∆T − 2, as required. Hence, by the induction
assumption we can proceed and divide the remainder among the losers. 17

The above procedure proves that, for every n ≥ 1, T ≥ 0:

Prop(T staircase, Squares, n) =
1

2n− 1 + T

By letting T = 0 we get:

Prop(Quarter plane, Squares, n) =
1

2n− 1

3.5.3 One and zero walls

A half-plane can be divided by partitioning it to two quarter-planes:

Claim 3.5.1. For every n ≥ 2:

Prop(Hal f plane, Squares, n) ≥ 1
2n− 2

Proof. Assume the cake is the half-plane y ≥ 0 and there are n agents who value it as 2n − 2. Do the
following mark auction: ask each agent to mark a quarter-plane open to the top-left, whose bottom edge
is adjacent to the bottom edge of C and its value is exactly 1. An example is illustrated below, where the
winning bid is — as usual — marked by thicker dots:

17The easy case is, in fact, contained in the hard case, since a square smaller than the edges adjacent to its corner has an empty
shadow (so m = 0). The split to easy and hard cases is done for presentation purposes only.
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After the winning bid is allocated to its winner, the n − 1 losers value the remaining quarter-plane as at
least (2n− 2)− 1 = 2(n− 1)− 1; divide it among them using the procedure of Subsection 3.5.2.

An unbounded plane can be divided by partitioning it to two half-planes:

Claim 3.5.2. For every n ≥ 4:

Prop(Plane, Squares, n) ≥ 1
2n− 4

Proof. Normalize the cake value to 2n− 4. Do the following mark auction: ask each agent to mark a half-
plane bounded at its bottom, with a value of exactly 2 (so each agent i marks a half-plane Yi = [−∞, ∞]×
[yi, ∞]). Order the bids by containment, so that Y1 ⊆ Y2 ⊆ · · · ⊆ Yn. Select two winners — the agents
with the two smallest bids (Y1 and Y2). Both winners value Y2 as at least 2; divide it among them using
cut-and-choose. Each of them receives a quarter-plane with a value of at least 1. The n− 2 losers value the
remaining half-plane as at least (2n− 4)− 2 = 2(n− 2)− 2; divide it among them using the procedure of
Claim 3.5.1.

The lower bounds for one and zero walls do not match the upper bounds proved in Section 3.3: the
proportionality coefficient (the coefficient of n in the denominator) is 2 in both cases, while the coefficients
in the upper bounds are 3/2 for a half-plane and almost 1 for an unbounded plane. We believe that the
procedures presented above are tight and the "real" coefficient is 2. The reason is that, whenever a plane is
cut by even a single straight line, the remainder is a half-plane, and when a half-plane is cut, the remainder
is a quarter-plane, and for a quarter-plane we know that the proportionality coefficient is 2. In future work
we plan to look for tighter impossibility results showing that the proportionality coefficient is indeed 2 in
half-planes and unbounded planes, too.

3.5.4 Three walls

Our next goal is to divide a square bounded by three walls. We already presented a procedure for a
square with three walls in Subsection 3.5.1, but the value guarantee of the present procedure is better and
it matches the upper bound of 1/(2n− 1). On the other hand, the present procedure uses general (non-
guillotine) cuts.

Similarly to the two-walls case, we have to generalize the problem and divide a rectilinear polygonal
domain unbounded in one direction, which for brevity we call a “valley”. Again the number of teeth is denoted
by T; see Figure 3.10.

We require the valley to have the Sunlight property, which means that light coming from the top can
reach all parts of the bottom border. In other words: no part of the valley lies below a wall; the bottom
border of a valley goes from the left wall (at x = 0) to the right wall (at x = 1) in stairs climbing to the
top-right or bottom-right, but never back to the left. Hence a valley can be represented as a sequence of
T + 1 levels {[xmin, xmax

i ]× yi}T+1
i=1 , where (see Figure 3.10):

0 = xmin
1 < xmax

1 = xmin
2 < xmax

2 · · · < xmax
T = xmin

T+1 < xmax
T+1 = 1

Our valley-division procedure is essentially similar to the staircase-division procedure: a mark-auction is
performed in each "corner" of the valley; the smallest bid in each corner is the corner-winning-bid; and a
global winning-bid is selected such that its "shadows" are contained in all other bids. We have to carefully
define the "corners" and the "shadows", and this requires several definitions.

The structure of a valley

For every level i ∈ {1, . . . , T + 1}, when we look from (xmin
i , yi) leftwards, we see a wall. Let xleft

i be the x
coordinate of that wall and yleft

i be the y coordinate of the level at the top of the wall (yleft
i > yi). If (xmin

i , yi)
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Figure 3.10: A valley with T = 3 teeth marked by discs (Left). It has T + 1 = 4 levels and can be covered
by 4 squares (Right). The levels coordinates are: [0, .1]× .8, [.1, .5]× .9, [.5, .7]× .6, [.7, 1.0]× .4. The levels
are covered from bottom to top: 4, then 3, then 1, then 2. In each level, the bottom rectangle, which is not
overlapped by higher squares, is the covering rectangle of that level.

is a bottom-left corner (such as in levels 1 and 3 and 4 in Figure 3.10), then xleft
i = xmin

i and yleft
i = yi−1 (if

xleft
i = 0, i.e. we hit the left boundary, then we define yleft

i = 1). Otherwise (as in level 2), xleft
i < xmin

i .
Similarly, define xright

i as the x coordinate of the wall we see at the right and yright
i as the y coordinate of

the level at the top of the wall (yright
i > yi). If (xmax

i , yi) is a bottom-right corner (such as in levels 1 and 4 in
the figure), then xright

i = xmax
i and yright

i = yi+1 (if xright
i = 1, i.e. we hit the right boundary, then we define

yright
i = 1). Otherwise (as in levels 2 and 3), xright

i > xmax
i .

The horizontal distance between the two walls surrounding a level is denoted:

dxi := xright
i − xleft

i

In the figure, the values of dxi for the 4 levels are: 0.1, 1.0, 0.5, 0.3. The vertical depth of a level is denoted
by:

dyi := min(yright
i , yleft

i )− yi

It is the height to which one has to climb in order to move to another level, or to exit the unit square. In the
figure, the values of dyi for the 4 levels (from left to right) are: 0.1, 0.1, 0.3, 0.2.

Initially we handle the case of a single agent. This requires a bound on the square-cover-number of the
valley, as a function of T. In general, the square-cover-number of a valley can be arbitrarily large, e.g, if the
valley has a single level [0, 1/m]× 0, then m squares are required to cover it, for every integer m. For our
purposes, we can restrict our attention to valleys that do not have such deep levels. Formally, we require
the valley to have the Shallowness property, which means that for every level i:

dyi ≤ dxi

This property guarantees that the valley can be covered by at most T + 1 squares, as we show in the
following subsection.

Covering a valley with squares

Lemma 3.5.2. If C is a valley with T teeth satisfying the Shallowness property, then:

CoverNum(C, Squares) ≤ T + 1
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Proof. Consider the lowest level — the level i with the smallest yi. Consider the square:

Si := [xleft
i , xleft

i + dxi]× [yi, yi + dxi]

Because this is the lowest level, both its endpoints are inner corners, so xleft
i = xmin

i and xleft
i + dxi = xright

i =
xmax

i .
The Shallowness property guarantees that dxi ≥ dyi. Hence, yi + dxi ≥ yi + dyi = min(yright

i , yleft
i ).

Hence, Si contains the rectangle:

Ri := [xleft
i , xright

i ]× [yi, min(yleft
i , yright

i )]

Call Ri the covering rectangle of level i (see Figure 3.10/Right). If we remove from the valley the covering
rectangle of i (the lowest level), then at least one of the teeth adjacent to it (from the left or from the right)
is flattened, and we remain with at most T − 1 teeth. In some remaining levels j, the xmin

j and xmax
j values

might change, but the xleft
j and xright

j do not change since the removed level was lower than all surrounding
levels. Hence, dxj and dyj do not change, the Shallowness property is preserved, and we can continue this
process iteratively until all the valley is covered. The number of squares in the covering is at most the
number of levels, T + 1.

The division procedure

We are now ready to present the valley-division procedure.
We normalize the valuations of all agents such that the value of the entire valley for each agent is

2n− 1 + T. We use a sequence of mark auctions to give each agent a square with a value of at least 1.
We proceed by induction on the number of agents n. When n = 1, the value for the single agent is at

least T + 1. By Lemma 3.5.2 the valley can be covered by T + 1 squares, so by the Covering Lemma the
agent can get a square with a value of at least 1.

Suppose we already know how to divide a T-valley to n − 1 agents, for every integer T ≥ 0. Now
there are n agents. Start by doing 2(T + 1) mark auctions. There are two auctions per level: one on the left
and one on the right of its covering rectangle. For every level i ∈ {1, . . . , T + 1}, ask each agent to mark
two squares with a value of exactly 1: a square with its bottom-left corner at the bottom-left corner of Ri

(xleft
i , yi) and a square with its bottom-right corner at the bottom-right corner of Ri (xright

i , yi). The squares
may overlap. An agent can refrain from participating in an auction if the largest square he can mark at
this corner has a value of less than 1. By the Covering Lemma, each agent can participate in at least one
auction.

In each corner, there are at most n squares. From these, we select a smallest square as the "corner-
winning-bid". Now we have at most 2(T + 1) corner-winners. The global-winner is the square with a
lowest top side. I.e, if the side-length of the i-level winning-bid is li, then the global winner is a square
with a smallest yi + li.

In the illustration below, the index of each level is written below the level. There are squares only in 7
out of 10 corners, since no agents participated in the auction for the corner (xleft

3 , y3) (marked with x) and
for level 5. The global-winner (marked with thicker dots) is the corner-winner at the corner (xright

1 , y1):

1

2

3

4
5

x

In addition to the winning square, we may have to remove some other parts of the valley, in order to
ensure that the remaining valley satisfies the two properties defined above: the Sunlight property and the
Shallowness property. We have to prove that this allocation leaves a sufficiently high value for the losing
agents.
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After all the removals, the number of agents changes by ∆n = −1 since one agent leaves; the cake value
for a losing agent changes by ∆V (a negative quantity); and the number of teeth changes by ∆T which may
be positive or negative. Looking at the value requirement V ≥ 2n + T − 1, we see that in order to use the
induction assumption, it is sufficient to prove that for every loser:

∆V ≥ 2∆n + ∆T = ∆T − 2

so the value of each loser should drop by at most two units, plus one unit for each removed tooth.
The following analysis depends on whether the winning square is adjacent to a right corner (xright

i , yi)
as in the illustration above, or a left corner (xleft

i , yi). The two cases are entirely symmetric; henceforth we
assume that the winning square is adjacent to a right corner.

First, we handle the Sunlight property by cutting from the left edge of the winning square down to the
bottom border of C:

1

2

3

4
5

x

The winning square casts a shadow on m ≥ 0 teeth below it, which are all removed. In the illustration
above, m = 1. Additionally, a new tooth is added at the top-left of the winning square. Additionally, if the
winning square is higher than the tooth at its right (as in the figure), then that tooth is removed and a new
tooth is added at the top-right of the winning square. All in all, ∆T = 1−m.

The winning square casts a shadow on 1 + m levels. All squares of the losing agents in these levels
are higher than the winning square; hence, the shadows of the winning square are contained in the losers’
squares, and the total value of the shadows is at most 1+m. All in all, ∆V ≥ −1−m = ∆T− 2, as required.

Next, we have to handle the Shallowness property by removing deep levels — levels for which dyj > dxj
or equivalently:

min(yright
j , yleft

j )− yj > xright
j − xleft

j (3.1)

This is done separately to the left and to the right of the winning square:

• A level to the left of the winning square (j < i) may become deep if the left edge of the winning
square, and the cut from that edge downwards, becomes its rightmost wall:

xright
j ← xleft

i yright
j ← yi + li

(yi + li)− yj > xleft
i − xleft

j

• A level to the right of the winning square (j > i) may become deep if the right edge of the winning
square becomes its leftmost wall:

xleft
j ← xright

i yleft
j ← yi + li

(yi + li)− yj > xright
j − xright

i

In each side, we remove the highest deep level, and all levels below it. In the illustration below, only
level 4 (to the right of the winning square) is removed:

39



1

2

3

4
5

x

By selection of the global winner: yj + lj ≥ yi + li, which implies:

lj ≥ (yi + li)− yj (3.2)

If a level j < i becomes deep, then (3.2) implies:

lj > xleft
i − xleft

j

=⇒ xleft
j + lj > xleft

i .

In addition to yj + lj ≥ yi + li, this implies that the removed rectangle [xleft
j , xleft

i ]× [yj, min(yi + li, yleft
j )] is

contained in the corner-winner: [xleft
j , xleft

j + lj]× [yj, yj + lj]. Hence, the value of the removed rectangle is
at most 1. At most one unit of value is removed, and one tooth is removed. Hence, the balance between
∆V and ∆T is maintained.

If a level j > i becomes deep, then (3.2) implies:

lj > xright
j − xright

i

=⇒ xright
j − lj < xright

i .

In addition to yj + lj ≥ yi + li, this implies that the removed rectangle [xright
i , xright

j ]× [yj, min(yi + li, yright
j )]

is contained in the corner-winner: [xright
j − lj, xright

j ]× [yj, yj + lj]. Hence, the value of the removed rectangle
is at most 1. At most one unit of value is removed, and one tooth is removed. The balance between ∆V and
∆T is maintained.

Finally, we have to handle the Sunlight property again by removing all levels below the levels removed
in the previous step. We now prove that in all such levels, no agent marked any square. Indeed, let j be a
level that became deep, and k be a level shadowed by it. So yk < yj and xleft

k > xleft
j and xright

k < xright
j . The

side-length of any square marked in level k is at most xright
k − xleft

k , so lk < xright
k − xleft

k < xright
j − xleft

j and:

yk + lk < yj + (xright
j − xleft

j )

Combining this with (3.1) gives:

yk + lk < min(yright
j , yleft

j ) ≤ yi + li

but this contradicts the assumption that i is the global-winning-square. Therefore, all levels below a deep
level have a value of less than 1 to all agents. At most one unit of value is removed per level, so the balance
between ∆V and ∆T is maintained.

To summarize: after allocating the winning square to the winner and removing some parts of the valley,
we have a new valley with T + ∆T teeth satisfying the Sunlight and the Shallowness properties, and each
losing agent values it as at least ((2n− 1 + T) + ∆V) ≥ ((2n− 1 + T) + (∆T − 2)) = 2(n− 1)− 1 + (T +
∆T). Therefore, by the induction assumption we can continue to divide it among the n− 1 losers.

The above procedure proves that, for every n ≥ 1, T ≥ 1:

Prop(T valley, Squares, n) =
1

2n− 1 + T

A square with 3 walls is a valley with no teeth. It obviously satisfies the Sunlight property and the
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Shallowness property. Letting T = 0 in the above formula yields:

Prop(Square with three walls, Squares, n) =
1

2n− 1

matching the upper bound.

Remark

We divided a 2-walls square by generalizing it to a "staircase", and divided a 3-walls square by generalizing
it to a "valley". The natural next step is to divide a 4-walls square by generalizing it to a rectilinear polygon.
This is a much more challenging task even for a single agent. The algorithmic problem of finding a minimal
square-covering for a rectilinear polygon has been solved by Bar-Yehuda and Ben-Hanoch (1996), and we
believe that their algorithm can be used for developing a rectilinear polygon division procedure. However,
this algorithm is much more complicated than our covering algorithm of Subsection 3.5.4, so the division
procedure will probably also be much more complicated.

In the next subsection we present a procedure for dividing a square using a different approach, which
works only when the value measures are identical.

3.5.5 Four walls, guillotine cuts, identical valuations

Our procedures for identical valuations differ from the other procedures in that they do not use auctions,
since all agents would make the same bids anyway.

We develop simultaneously a pair of division procedures. Both procedures accept a cake C which is
assumed to be the rectangle [0, 1] × [0, L], and a single continuous value measure V. They return some
disjoint square pieces {Xi} such that for every i: V(Xi) ≥ 1.

The two procedures differ in their requirement on L (the height/length ratio of the cake) and in the
number of “walls” (bounded sides) they assume on the cake:

• The fat-procedure requires that L ∈ [1, 2] (i.e, the cake is a 2-fat rectangle) and it guarantees that all
allocated squares are contained in C;

• The thin-procedure requires that L ∈ [2, ∞) (i.e, the cake is a "2-thin" rectangle) and it returns one of
the following two outcomes:

1. n− 1 squares contained in C (i.e, bounded by the 4 walls of the cake), or -

2. n squares contained in [0, ∞]× [0, L], i.e, bounded by only 3 walls but may flow over the right-
most border. Every square that flows over the rightmost border is guaranteed to have its leftmost
edge adjacent to the leftmost edge of C and its side-length at most L− 1 (the longer side of the
cake minus its shorter side), so that all squares are contained in [0, L− 1]× [0, L].

Additionally, the two procedures differ in their requirement on the total cake value:

• The fat-procedure requires that V(C) ≥ 2n.

• The thin-procedure requires that V(C) ≥ 2n− 2.

The procedures are developed by induction on n. We first consider the base case n = 1:

• In the fat-procedure, the cake value is 2 and the cake is 2-fat, so by the Covering Lemma it contains a
square with a value of at least 1.

• The thin-procedure can just return an empty set. This is an instance of the first outcome — n − 1
squares contained in C.

We now assume that both procedures work well for any number less than n. Given n ≥ 2, we proceed as
in the following subsections.

Henceforth, we make the following positivity assumption: every piece with positive area has positive
value. This assumption is only for convenience: it simplifies the presentation and reduces the number of
cases to consider. It can be dropped by adding sub-cases to each case in the procedures.
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Fat procedure

At this point, the cake is a 2-fat rectangle with width 1 and height L ∈ [1, 2]. Its total value is 2n, and n ≥ 2.
For every integer u ∈ [0, 2n], let yu be the value y ∈ [0, L] such that the cake below y has value u:

V([0, 1] × [0, yu]) = u. By the positivity assumption, yu is unique, y0 = 0 and y2n = L ≥ 1. Therefore,
there exists a smallest k ∈ [1, n] such that: y2k ≥ 1/2. Let Bottom := [0, 1]× [0, y2k] = the cake below y2k;
note that it is a 2-fat rectangle. Let Top := C \ Bottom = [0, 1] × [y2k, L] = the cake above y2k. We have
V(Bottom) = 2k and V(Top) = 2(n− k). Now there are two cases:

Case A: L− y2k ≥ 1/2 (this implies k < n). Thus Bottom and Top are both 2-fat rectangles:

L

0

y2k

← TopV = 2(n− k)

← BottomV = 2k

Apply the fat procedure to Bottom and Top and get k + (n− k) = n squares contained in C.
Case B: L − y2k < 1

2 , so Bottom is 2-fat and Top is 2-thin. Now consider y2k−2. By definition of k,
y2k−2 < 1

2 . Let Bottom′ := [0, 1]× [0, y2k−2] and Top′ := C \ Bottom′ = [0, 1]× [y2k−2, L], so V(Bottom′) =
2(k − 1) = V(Bottom)− 2 and V(Top′) = 2(n− k + 1) = V(Top) + 2. Note that Bottom′ is 2-thin and is
contained in Bottom, and Top′ is 2-fat and contains Top:

L

0

y2k

y2k−2

V = 2(n− k)

V = 2

V = 2(k− 1)

← Top

← Bottom′ ← Bottom

← Top′

Because here n ≥ 2, either n− k ≥ 1 or k− 1 ≥ 1 or both. Hence, at least one of the two 2-thin parts
(Top, Bottom′) is non-empty and with value at least 2. Use the thin procedure to divide the non-empty thin
part/s. In each part there are two possible outcomes: a smaller number of squares within 4 walls or a larger
number of squares within 3 walls. There are several cases to consider.

— One easy case is that we get the 4-walls outcome in at least one of the parts — either in Top or in
Bottom′ or in both. Suppose that we get the 4-walls outcome in Bottom′. So we have k− 1 squares within
the 4 walls of Bottom′. Ignore the outcome on Top and apply the fat procedure to Top′. This results in
n− k + 1 additional squares, so we have the required n squares. The situation is analogous if we get the
4-walls outcome in Top.

— Another easy case is that we get the 3-walls outcome in one part, and the other part is empty. Suppose
that Top is empty (this implies k = n) and we get the 3-walls outcome in Bottom′. So we have (k− 1)+ 1 = n
squares contained in [0, 1]× [0, 1− y2k−2] ⊆ C, as required. The situation is analogous if Bottom′ is empty
and we get the 3-walls outcome in Top.

— The hard case is that both Top and Bottom′ are non-empty and the thin procedure on both of them
returns the 3-walls outcome. Now we have k bottom squares and n− k + 1 top squares, for a total of n + 1
squares, e.g:
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L

0

y2k

y2k−2

← Top

← Bottom′

A potential problem in the last step is that some of the squares might overlap: some top squares might flow
over the lower boundary of Top and overlap a bottom square, or some bottom squares might flow over the
upper boundary of Bottom’ and overlap a top square. To prevent an overlap, we remove a single square
— the largest of the n + 1 squares (dashed square in the illustration above) — and return the remaining n
squares.

It remains to prove that, indeed, after the largest square is removed, the remaining n squares do not
overlap. The proof is purely geometric and it is delegated to Appendix 3.B.

Thin procedure

At this point, the cake is a 2-thin rectangle with width 1 and height L ∈ [2, ∞). Its total value is 2n− 2, and
n ≥ 2. The procedure is allowed to return one of two outcomes:

Outcome #1: n− 1 squares bounded by the 4 walls of C, i.e, contained in [0, 1]× [0, L], or —
Outcome #2: n squares bounded by the 3 walls of C, i.e, contained in [0, ∞]× [0, L]. In this case, every

square that flows over the rightmost border must have its leftmost edge adjacent to the leftmost edge of C
(the edge x = 0), and its side-length must be at most L − 1 (the longer side of C minus its shorter side).
This means that all n squares must be contained in [0, L− 1]× [0, L].

We first handle the case n = 2, in which V = 2.
Select y ∈ [0, L] such that V([0, 1]× [0, y]) = V([0, 1]× [y, L]) = 1. Proceed according to the value of y:

L

0

L− 1
1

y

V = 1

V = 1

L

0

L− 1
1

y

V = 1

L

0

L− 1
1

y
V = 1

• If y ∈ [1, L− 1] (left) then return the two squares [0, y]× [0, y] and [0, L− y]× [y, L]. Both squares are
in [0, L− 1]× [0, L] with their left side at x = 0; this is an instance of outcome #2.

• If y ∈ [0, 1) (middle) then return [0, 1]× [0, 1]; if y ∈ (L− 1, L] (right) then return [0, 1]× [L− 1, L].
Both cases are instances of outcome #1.

From now on we assume that n ≥ 3.
For every u ∈ [0, 2n − 2], define yu as the value y ∈ [0, L] such that the cake below y has value u:

V([0, 1]× [0, yu]) = u. By the positivity assumption, yu is unique and y0 = 0 and y2n−2 = L. Therefore,
there exists a smallest k ∈ [1, n− 1] such that: y2k ≥ 1

2 . Mark the cake below y2k ([0, 1]× [0, y2k]) as Bottom
and the part above it ([0, 1]× [y2k, L]) as Top. We have V(Bottom) = 2k and V(Top) = 2(n− k− 1).

Now there are two cases:
Case A: L− y2k ≥ 1

2 (this implies k < n− 1). Thus each of Bottom and Top is either 2-fat, or 2-thin with
its longer side facing rightwards.

43



L

0

y2k

← Top

V = 2(n− k− 1)

← Bottom

V = 2k

Apply the fat procedure or the thin procedure, whichever is appropriate, to Bottom and Top. In each part
there are two possible outcomes: a smaller number of squares within 4 walls, or a larger number of squares
within 3 walls.

— If we get the 4-walls outcome in both parts, then we have k + (n− k− 1) = n− 1 squares within the
4 walls of C, which is an instance of Outcome #1.

— If we get the 4-walls outcome in one part and the 3-walls outcome in the other part, then we have
k + (n− k) = n or (k + 1) + (n− k− 1) = n squares within 3 walls. By the induction assumption, the thin
procedure guarantees that all squares flowing over the rightmost border have their leftmost edge adjacent
to the leftmost wall x = 0, and their side-length at most the longer side minus the shorter side. Here,
the longer side of both Bottom and Top is less than L and their shorter side is 1, so all these squares are
contained in [0, L− 1]× [0, L], so we have an instance of Outcome #2.

— If we get the 3-walls outcome in both parts, then we have k + (n− k) + 1 = n + 1 squares within 3
walls. We can discard one square arbitrarily and remain with n squares as in the above case, which is again
an instance of Outcome #2.

Case B: L− y2k <
1
2 , so Bottom is 2-fat or 2-thin facing rightwards, and Top is 2-thin facing downwards.

Now consider y2k−2. By definition of k, y2k−2 < 1
2 . let Bottom′ = [0, 1] × [0, y2k−2] and Top′ = [0, 1] ×

[y2k−2, L], so V(Bottom′) = 2(k − 1) = V(Bottom)− 2 and V(Top′) = 2(n− k) = V(Top) + 2. Note that
Bottom′ is 2-thin facing upwards and is contained in Bottom, and Top′ is 2-fat or 2-thin facing rightwards
and contains Top:

L

0

y2k

y2k−2

← TopV = 2(n− k− 1)

V = 2

V = 2k− 2 ← Bottom′ ← Bottom

← Top′

At this point n ≥ 3, so either n− k− 1 ≥ 1 or k− 1 ≥ 1 or both. Hence, at least one of the two thin parts
facing downwards/upwards (Top, Bottom′) is non-empty and with value at least 2. Use the thin procedure
on the non-empty part/s facing downwards/upwards. In each part there are two possible outcomes: a
smaller number of squares within 4 walls or a larger number of squares within 3 walls. There are several
cases to consider.

— One easy case is that we get the 4-walls outcome in at least one of the parts — either in Top or in
Bottom′ or in both. Suppose that we get the 4-walls outcome in Bottom′ (the situation is analogous if we get
the 4-walls outcome in Top). So we have k− 1 squares within the 4 walls of Bottom′. We ignore the outcome
on Top and proceed to get additional squares from Top′. Apply to Top′ either the fat procedure (if it is 2-
fat) or the thin procedure (if it is 2-thin facing rightwards). One possibility is that we get n− k additional
squares contained in Top′; then we have a total of n − 1 squares contained in C, which is an instance of
Outcome #1. Another possibility is that we get n− k + 1 additional squares bounded by only three walls of
Top′; by the induction assumption and the guarantees of the Thin Procedure, the squares that flow over the
rightmost border of Top′ are adjacent to its leftmost wall, which coincides with the leftmost wall of C. Their
side-length is at most the longer side-length of Top′ minus its shorter side-length; the longer side-length of
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Top′ is less than L and its shorter side-length is 1, so the side-length of all the additional squares is at most
L− 1, and we have an instance of Outcome #2.

— Another easy case is that we get the 3-walls outcome in one part, and the other part is empty. Suppose
that Top is empty (this implies k = n− 1) and we get the 3-walls outcome in Bottom′. So we have (k− 1) +
1 = n− 1 squares contained in [0, 1]× [0, 1− y2k−2] ⊆ C, which is an instance of Outcome #1. The situation
is analogous if Bottom′ is empty and we get the 3-walls outcome in Top.

— The hard case is that both Top and Bottom′ are non-empty and the thin procedure on both of them
returns the 3-walls outcome. We now have the following squares:

• k ≥ 1 bottom squares in [0, 1]× [0, 1− y2k−2];

• n− k ≥ 1 top squares in [0, 1]× [L− 1 + (L− y2k), L].

Because L ≥ 2, no squares overlap:

L

0

y2k

y2k−2

← Top

← Bottom′

We now have n squares within the 4 walls of C, which is more than we need for Outcome #1.

The guarantees of the Fat Procedure imply that, for all n ≥ 2:

PropSame(Square with 4 walls, Squares, n) ≥ 1
2n

which exactly matches the upper bound of Claim 3.3.4.

Fat rectangle pieces

When the pieces are allowed to be R-fat rectangles, the above lower bound is of course still valid. But when
R ≥ 2, the Fat Procedure can give a slightly stronger guarantee - the required value is 2n− 1 instead of 2n
(the Thin Procedure is unchanged). The required modifications in the Fat Procedure are briefly explained
below:

• In the base case (n = 1), the cake value is 1 and it is 2-fat, so the procedure returns the entire cake as
a single piece.

• In the main procedure (n ≥ 2), we first try to cut the cake horizontally to two 2-fat rectangles and
apply the Fat Procedure to each of them. For this, we need to find some y ∈ [1/2, L− 1/2] such that
the value below y is at least 2k − 1 and the value above y is at least 2(n − k) − 1, for some integer
k ≥ 1. Then, both the part below y and the part above y are 2-fat. By the induction assumption, the
Fat Procedure finds k 2-fat-rectangles in the bottom part and n− k 2-fat-rectangles in the top part, so
we are done.

• If we cannot find such y, this means that for all y ∈ [1/2, L− 1/2] and every integer k′, either the value
below y is less than 2k′ − 1 or the value above y is less than 2(n − k′) − 1. But the latter condition
implies that the value below y is more than 2k′, so the condition becomes: for all y ∈ [1/2, L− 1/2]
and every integer k′, the value below y is either less than 2k′ − 1 or more than 2k′. So for all y ∈
[1/2, L− 1/2], the value below y is in the open interval (2k− 2, 2k− 1) for some integer k ≥ 1. This
means that the cake looks like this, for some integer k:
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L

0

y2k−2
V = 2(k− 1)

y2k−1
V = 2(n− k)

V = 1

← Top

← Bottom′ ← Bottom

← Top′

where y2k−2 < 1/2 and y2k−1 > L− 1/2. Hence, the parts Top := [0, 1]× [y2k−1, L] and Bottom′ :=
[0, 1]× [0, y2k−2] are both 2-thin rectangles (one of these parts may be empty). V(Top) = 2(n− k) and
V(Bottom′) = 2(k− 1). This is exactly the same situation as in Case B of the original procedure. We
can now apply the Thin Procedure to Top and to Bottom′ and proceed according to the outcomes.

Therefore, for all n ≥ 2 and R ≥ 2:

PropSame(Square with 4 walls, R f at rectangles, n) ≥ 1
2n− 1

which exactly matches the upper bound of Claim 3.3.15.

Remark

The above procedures work only when the value measures are identical. The main reason is that the Thin
procedure may return one of two outcomes. When there is a single value measure, the returned outcome is
unique. But when there are different value measures, each value measure may induce a different outcome,
and the different outcomes may be incompatible.

3.5.6 Compact cakes of any shape

As explained in Subsection 3.1.1, when the cake can be of an arbitrary shape, Prop(C, S, n) may be arbitrar-
ily small. Hence it makes sense to assess the fairness of an allocation for a particular agent relative to the
total utility that this agent can get in an S-piece when given the entire cake. This intuition is captured by the
following definition. It is an analogue of Definition 3.2.1, the only difference being that the normalization
factor is the cake utility VS(C) instead of the cake value V(C):

Definition 3.5.3. (Relative proportionality) For a cake C, a family of usable pieces S and an integer n ≥ 1:
(a) The relative proportionality level of C, S and n, marked RelProp(C, S, n), is the largest fraction r ∈ [0, 1]

such that, for every set of n value measures (Vi, ..., Vn), there exists an S-allocation (X1, ..., Xn) for which
∀i : Vi(Xi)/VS

i (C) ≥ r.
(b) The same-value relative proportionality level of C, S and n, marked RelPropSame(C, S, n), is the largest

fraction r ∈ [0, 1] such that, for every single value measure V, there exists an S-allocation (X1, ..., Xn) for
which ∀i : V(Xi)/VS(C) ≥ r.

Our first result involves parallel squares.

Claim 3.5.3. For every cake C which is a compact subset of R2:

RelProp(C, Parallel squares, n) ≥ 1
8n− 6

Proof. We normalize the valuations of all agents such that, for every agent i, VS
i (C) = 8n− 6. We show a

division procedure giving each agent a square with a value of at least 1.
(1) Preparation: Each agent i draws a “best square” in C — a square qi that maximizes Vi. The existence

of such a square can be proved based on the compactness of the set of squares in C; this is done in Appendix
3.C. By definition of the utility function VS, for every i: Vi(qi) = VS

i (C) = 8n− 6.
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(2) Mark auction: Let N := 4n − 3. Ask each agent i to mark, inside qi, N pairwise-disjoint parallel
squares with a value of 1 (the agent can do so by using the division procedure for identical value measures
described in Subsection 3.5.5: this procedure finds N squares in qi, each of which has a value of at least
Vi(qi)/(2N) = 1). Let Qi be the collection of N squares marked by i.

An agent’s bid is interpreted as saying "I am willing to give my entitlement to a piece of C in exchange
for any square in Qi". Our goal now is to allocate to each agent i a single piece from the collection Qi such
that the n allocated pieces are pairwise-disjoint.

(3) Winner selection: a smallest square in ∪iQi is selected as the winning bid (if there several smallest
squares, one is selected arbitrarily). Denote the selected smallest square by q∗ and suppose it belongs to
agent i. Agent i now receives q∗ and goes home.

(4) Bid adjustment: For each agent j 6= i, remove from Qj all squares that overlap q∗. Since the squares
in Qj are all pairwise-disjoint and not smaller than q∗, the number of squares removed is at most 4. This is
based on the following geometric fact: given a square q, there are at most 4 parallel squares that are larger
than q, overlap q and do not overlap each other. This is because each square larger than q which overlaps
q, must overlap one of its 4 corners, so there can be at most 4 such squares:

After the removal, each of the remaining n− 1 agents has a collection of at least 4(n− 1)− 3 squares. If
only a single agent remains, then his collection contains at least 1 square; allocate this square to the single
agent and finish. Otherwise, go back to step (3) and select the next winner from the remaining n− 1 agents.

Finally, each agent i ∈ {1, . . . , n} holds a square from the collection Qi. This square has a value of at
least 1, which proves the claim.

The proof of Claim 3.5.3 can be generalized to other families of usable pieces:
Claim 3.5.4. For a family of pieces S, define:

• OS = the largest number of pairwise-disjoint S-pieces that overlap an S-piece with a smaller diameter.

• PropSame(S, S, n) = infC∈S PropSame(C, S, n).

Then for every compact cake C and every n ≥ 1:

RelProp(C, S, n) ≥ PropSame(S, S, OS · (n− 1) + 1)

The proof is exactly the same as that of Claim 3.5.3, with only the constant 4 replaced by OS, 3 replaced
by OS − 1 and the function 1/(2N) replaced by PropSame(S, S, N).

When S is the family of general (rotated) squares, OS = 8:18

18We are grateful to Mark Bennet, Martigan, calculus, Red, Peter Woolfitt and Dejan Govc for their help in calculating this
number in http://math.stackexchange.com/q/1085687/29780 . Image credit: Dejan Govc. Licensed under CC-BY-SA 3.0.

47



Corollary 3.5.4. For every cake C which is a compact subset of R2:

RelProp(C, Squares, n) ≥ 1
16n− 14

When S is the family of parallel R-fat rectangles, OS = d2R + 2e:

Corollary 3.5.5. For every cake C which is a compact subset of R2:

RelProp(C, Parallel R f at rectangles, n) ≥ 1
2d2R + 2e(n− 1) + 2

For completeness, we present the following trivial result regarding identical value measures:

Claim 3.5.5. For every cake C which is a compact subset of R2:

RelPropSame(C, Squares, n) =
1

2n

Proof. Suppose the value measure of all n agents is V. Let q be a best square in C — a square that maximizes
V. By definition of the utility function, V(q) = VS(C). Because q is a square, it is possible to allocate within
it n disjoint squares with a value of at least V(q)/(2n) = VS(C)/(2n).

Remarks

1. The constant OS — the largest number of pairwise-disjoint S-pieces that overlap an S-piece with a
smaller diameter — has been used for developing approximation procedures for the problem of finding
a maximum non-overlapping set (Marathe et al., 1995). The approximation factors are not tight. For ex-
ample, for n = 2, in step (b) we create 4n − 3 = 5 axis-parallel squares for each agent, but it is possible
to prove that 3 squares per agent suffice for guaranteeing that a pair of disjoint squares exists. Hence,
RelProp(C, Axis parallel squares, n = 2) ≥ 1/6. What is the smallest number of squares required to guar-
antee the existence of n disjoint squares? This open question is interesting because it affects both the
proportionality coefficient in our fair cake-cutting procedure and the approximation coefficient in the max-
imum disjoint set algorithm of Marathe et al. (1995).

2. The Winner Selection procedure (step 3 in the proof) can be used even when the value functions of
the agents are not additive or even not monotone (i.e. some parts of the land have negative utility to some
agents). As long as every agent can draw N disjoint squares, the procedure guarantees that he receives one
of these pieces.

3. Iyer and Huhns (2009) present a division procedure in which each agent marks n desired rectangles.
Their goal is to allocate each agent a single desired rectangle. However, because the rectangles might be
arbitrarily thin, it is possible that a single rectangle will intersect all other rectangles. In this case, the
procedure fails and no allocations are returned. In contrast, our procedure requires the agents to draw fat
pieces. This guarantees that it always succeeds.

3.6 Conclusions and Future Work

This chapter laid the foundations for fair cake-cutting with geometric constraints. This topic has a large
potential for future research. Some possible directions are suggested below.

3.6.1 Open questions

We would like to close the gaps between the possibility and impossibility results in Tables 3.1 and 3.2. The
most interesting gap, in our opinion, is related to an unbounded plane. Our impossibility result assumes
that the squares are parallel to each other; if the squares are allowed to rotate arbitrarily, then we do not
have an impossibility result, and we do not know whether a proportional division is possible.

Based on our current results, and some other results which we had to omit in order to keep the paper
length at a reasonable level, we make the following conjecture:
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Conjecture. When a cake C is divided to n agents each of whom must receive a fat rectangle, the attainable propor-
tionality is:

1
2n + Geom(C)

Where Geom(C) is a (positive or negative) constant that depends only on the geometric shape of the cake.

In other words: the move from a one-dimensional division to a two-dimensional division asymptoti-
cally decreases the fraction that can be guaranteed to every agent by a factor of 2.

Another direction is extending the results to cakes in three or more dimensions. We have some prelim-
inary results in this direction.

It may be interesting to study cakes of different topologies, such as cylinders and spheres. We mention,
in particular, the following potentially practical open question: is it possible to divide Earth (a sphere) in a
fair-and-square way?

3.6.2 Different geometric constraints

The present chapter focused on constraints related to geometric shape — squareness or fatness. One could
also consider constraints related to size, e.g. by defining the family S to be the family of all rectangles of
length above 10 meters or area above 100 square meters. A problem with these constraints is that they are
not scalable. For example, if the cake is 200-by-200 meters and there is either a length-minimum of 10 or
an area-minimum of 100, then it is impossible to divide the land to more than 400 agents. Governments
often cope with this problem by putting an upper bound on the number of people allowed to settle in
a certain location. However, this limitation prevents people from taking advantage of new possibilities
that become available as the number of people increases. For example, while in rural areas a land-plot of
less than 10-by-10 meters may be considered useless because it cannot be efficiently cultivated, in densely
populated cities even a land-plot as small as 2-by-2 meters can be used as a parking lot for rent or as a
lemonade selling spot. Limiting the number of agents assures that each agent gets a land-plot that can
be cultivated efficiently, but it may prevent more profitable ways of using the land-plots. In contrast, the
squareness/fatness constraint is scalable because it does not depend on the absolute size of the land-cake.
It is equally meaningful in both densely and sparsely populated areas.

The division problem can be extended by allowing each agent to have a different geometric constraint
(a different family S of usable shapes) or even to have utility functions which combine different families of
usable shapes (with an agent-specific weight for each family).

Finally, the two auction types used by our procedures (see Subsection 3.1.2) can possibly be generalized.
For example, it may be interesting to see what can be attained if each agent receives two entitlements
instead of one. This is common in some rural settlements, in which each settler receives two plots — one
for housing and one for farming.

3.6.3 Web implementation

Some of the algorithms presented in this chapter have been implemented and can be tried online.19 Cur-
rently the website is only used for demonstration purposes, but it can be made more practical, for example,
by letting the users upload maps of lands that have to e divided, and by letting users submit their valua-
tions remotely.
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(x∗ , y∗)

Figure 3.11: a. A staircase with T = 3 teeth and T + 1 = 4 corners and a square in each corner. The
diagonal (dashed) represents tj — the taxicab distance from the origin to the square center. The square at
corner 2 is the winning square as its taxicab distance is minimal (the diagonal is closest to the origin).
b. The shadow of the winning square (dotted). Note that each rectangular component of the shadow is
entirely contained in the square of the corresponding corner.

Chapter 3 Appendix
3.A Staircase Lemma

This appendix proves the following geometric lemma, which is used in Section 3.5.2:

Lemma 3.A.1. (Staircase Lemma) Let C be a staircase-shaped polygonal domain with T teeth (and T + 1 corners).
Suppose that in each inner corner j ∈ {1, . . . , T + 1}, with coordinates (xj, yj), there is a square with side-length lj
(the square [xj, xj + lj]× [yj, yj + lj]).

Define the shadow of square j as the intersection of C with the rectangle [0, xj + lj]× [0, yj + lj] (this is the area
of C that is removed when cutting from the top-right corner of square j towards the bottom and left boundaries of C;
see Figure 3.11/b).

There exists a corner j such that the shadow of square j is contained in the union of the T + 1 squares.

Proof. For every j ∈ {1, . . . , T + 1}, define:

tj := xj + yj + lj

tj can be interpreted as the "taxicab distance" (`1 distance) from the origin to the center of the square at
corner j, or equivalently to its bottom-right or top-left corner;

Define the winning square as the square j for which tj is minimized. Denote its corner coordinates by
(x∗, y∗) and its side-length by l∗. We now prove that the shadows of the winning square are contained
in the other squares. We decompose the shadows of the winning square to pairwise-disjoint rectangular
components in the following way.

• For each corner j to the top-left of the winning square, the component is a rectangle with coordinates:
[xj, x∗]× [yj, y∗ + l∗]. Note that this component is empty if yj ≥ y∗ + l∗, as in corner 4 in Figure 3.11.

• For each corner j to the bottom-right of the winning square, the component is a rectangle with coor-
dinates: [xj, x∗ + l∗]× [yj, y∗]. This component is empty if xj ≥ x∗ + l∗.

By definition of the winning square, for every j ∈ {1, . . . , T + 1}:

xj + yj + lj ≥ x∗ + y∗ + l∗ (3.3)

Now:

• For each corner j to the top-left of the winning square, we have xj < x∗. Combining this with (3.3)
gives y∗ + l∗ < yj + lj. Moreover, if the component in that corner is not empty, then necessarily
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yj < y∗ + l∗. Combining this with (3.3) gives x∗ < xj + lj. Hence, the component [xj, x∗]× [yj, y∗ + l∗]
is contained in the square [xj, xj + lj]× [yj, yj + lj].

• For each corner j to the bottom-right of the winning square, we have yj < y∗. Combining this with
(3.3) gives x∗ + l∗ < xj + lj. Moreover, if the component in that corner is not empty, then necessarily
xj < x∗ + l∗. Combining this with (3.3) gives y∗ < yj + lj. Hence, the component [xj, x∗ + l∗]× [yj, y∗]
is contained in the square [xj, xj + lj]× [yj, yj + lj].

We proved that every component of the shadow of the winning square is contained in one of the T + 1
squares; hence, the winning square satisfies the requirement of lemma.

3.B Non-intersection of Squares in Fat Procedure

This appendix proves that in the last step of the Fat Procedure (Subsection 3.5.5), the n returned squares do
not overlap.

Recall that at this step, the cake has two distinguished regions: Bottom′ := [0, 1]× [0, yb] and Top :=
[0, 1]× [yt, L], both of which are 2-thin rectangles, i.e, 0 < yb < 1/2 ≤ L− 1/2 < yt < L. In each region
there is a family of squares: the bottom squares were returned by applying the Thin Procedure to Bottom’,
and the top squares were returned by applying the Thin Procedure to Top. The squares in each family are
pairwise-disjoint, but squares from different families might overlap. Our goal is to prove that, after a single
largest square is removed, the remaining squares do not overlap, as in the following illustration:

L

0

← Top
yt

yb
← Bottom′

Recall that, by the specification of the Thin Procedure (Subsection 3.5.5), the squares in each family can be
divided to two types, which we call "doves" and "hawks":

• Doves are squares generated by Outcome #1 of the Thin Procedure (or by recursive calls to the Fat Pro-
cedure). They are contained within the four walls of their rectangle: the bottom doves are contained
in [0, 1]× [0, yb], and the top doves are contained in [0, 1]× [yt, L].

• Hawks are squares generated by Outcome #2 of the Thin Procedure. They are contained within only
three walls of their rectangle, with one of their edges adjacent to the wall opposite the open side:
the bottom edge of all bottom hawks is at y = 0, and the top edge of all top hawks is at y = L.
Moreover, the side-length of each hawk is at most the longer side of its rectangle minus the shorter
side of its rectangle; hence, the side-length of all bottom hawks is at most 1− yb and their top edge is
in y ∈ [yb, 1− yb], and the side-length of all top hawks is at most 1− (L− yt) and their bottom edge
is in y ∈ [L− (1− L + yt), yt].

Claim 3.B.1. In each family, the sum of the side-lengths of all hawks is at most 1.

Proof. The bottom hawks are all bounded in a rectangle of length 1: [0, 1]× [0, 1− yb]. Their bottom side is
at y = 0. Since they do not overlap, the sum of their side-lengths must be at most 1. A similar argument
holds for the top hawks.

An immediate corollary of Claim 3.B.1 is that at most one hawk from each side has side-length more
than 1/2. We call each of these two hawks (if it exists) the dangerous hawk.

We say that a square q attacks a square q′ if q is larger than q′ and q overlaps q′. This is possible only
if q and q′ are in two opposite families, since the squares in each family are pairwise-disjoint. The doves
obviously do not attack each other because yb < yt. So the only possible attacks are: top hawks attacking
bottom hawks/doves, or bottom hawks attacking top hawks/doves.

After removing the largest square, at most one dangerous hawk remains; it is only this hawk that might
attack other squares in the opposite side. We now prove that even this dangerous hawk does not attack
other squares.
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Claim 3.B.2. No remaining hawk attacks any dove.

Proof. We prove that no remaining hawk even enters the rectangle of the opposite family (no remaining
bottom-hawk enters Top and no remaining top-hawk enters Bottom′). Since all doves are contained in their
rectangle, they are safe. There are two cases:

Case 1: yt ≥ L− yb. Then also yt ≥ 1− yb. The side-length of all bottom hawks is at most 1− yb, so no
bottom hawk enters Top. If the top dangerous hawk enters Bottom′, then its side-length must be more than
L− yb, so it is larger than all bottom hawks. Hence, it is the largest square and it is removed.

Case 2: yt < L − yb. Then also 1 − (L − yt) < 1 − yb ≤ L − yb. The side-length of all top hawks
is at most 1− (L − yt), no top hawk enters Bottom′. If the bottom dangerous hawk enters Top, then its
side-length must be more than yt, so it is larger than all top hawks. Hence, it is the largest square and it is
removed.

Claim 3.B.3. No remaining hawk attacks any hawk.

Proof. There are two cases:
Case 1: There is only one hawk (either bottom or top) with side-length more than 1/2. This is the largest

square so it is removed. The remaining squares have side-length at most 1/2 and thus do not attack each
other.

Case 2: There are two hawks (bottom and top) with side-length more than 1/2. W.l.o.g, assume the top
hawk is the largest, with a side-length of ht ≥ hb. By Claim 3.B.1, the sum of the side-lengths of all other
top hawks is at most 1− ht, hence the side-length of any single other top hawk is at most 1− ht which is at
most 1− hb which is at most L− hb. Hence, the bottom side of all remaining top hawks is above hb. Hence
the remaining bottom hawk cannot attack any of them.

3.C Existence of Best Pieces

This appendix shows how to prove the existence of a usable piece with a maximum value (this is used in
the proof of Claim 3.5.3). We start by defining a metric space of pieces (recall that a piece is a Borel subset
of R2 and Area is its Lebesgue measure).

Definition 3.C.1. The symmetric difference (SD) pseudo-metric is defined by:

dSD(X, Y) = Area[(X \Y) ∪ (Y \ X)]

dSD is not a metric because there may be different pieces whose symmetric difference has an area of 0,
e.g, a square with an additional point and a square with a missing point. To make SD a metric, we consider
only pieces X that are regularly open, i.e, the interior of the closure of themselves: X = Int[Cl[X]].

Claim 3.C.1. SD is a metric on the set of all regularly-open pieces.

Proof. 20 Let X and Y be two regularly-open sets such that dSD(X, Y) = 0. We prove that X = Y.
dSD(X, Y) = 0 implies Area[X \Y] = Area[Y \ X] = 0.
Y ⊆ Cl[Y] so X \Y ⊇ X \ Cl[Y]. Hence also Area[X \ Cl[Y]] = 0.
X is open and Cl[Y] is closed; hence X \ Cl[Y] is open (it is an intersection of two open sets).
The only open set with an area of 0 is the empty set (because any non-empty open set contains a ball

with a positive measure). Hence: X \ Cl[Y] = ∅.
Equivalently: X ⊆ Cl[Y].
By taking the Cl of both sides: Cl[X] ⊆ Cl[Y]
By a symmetric argument: Cl[Y] ⊆ Cl[X]
Hence: Cl[Y] = Cl[X]
By taking the Int of both sides and by the fact that they are regularly-open: Y = X.

Thus when we allocate a square we actually allocate only its interior. This has no effect on the utility of
the agents since the boundary has an area of 0 and so its value is 0 for all agents.

20We are thankful to Tony K., Phoemue X., Dafin Guzman, Henno Brandsma and Ittay Weiss for contributing to this proof via
discussions in the math.stackexchange.com website (http://math.stackexchange.com/a/1099461/29780).

53



Claim 3.C.2. Let D be the metric space defined by dSD. Let V be a measure absolutely continuous with
respect to area. Then V is a uniformly continuous function from D to R.

Proof. The fact that V is an absolutely continuous measure implies that, for every ε > 0 there is a δ > 0
such that every piece X with Area(X) < δ has V(X) < ε (Nielsen, 1997, Proposition 15.5 on page 251).
Hence, for every two pieces X and Y, if dSD(X, Y) < δ then Area(X \ Y) < δ and Area(Y \ X) < δ, then
V(X \Y) < ε and V(Y \ X) < ε, then |V(X)−V(Y)| = |V(X \Y)−V(Y \ X)| < ε.

Claim 3.C.3. Let V be a measure absolutely continuous with respect to area and Q a set of pieces which is
compact in the SD metric space. Then there exists a piece q ∈ Q for which V is maximized.

Proof. By the previous claim, V is a uniformly continuous and hence a continuous real-valued function. By
the extreme value theorem, it attains a maximum in every compact set.

The value measures considered in this paper are always absolutely continuous with respect to area.
Hence, to prove that a certain set of pieces Q contains a “best piece” it is sufficient to prove that Q is
compact. We do this now for the special case in which Q is the set of open squares contained in a given
cake (note that the same proof could be used for the set of closed squares):

Claim 3.C.4. Let C be a closed, bounded subset of R2. Let Q be the set of all open squares contained in C.
Then Q is compact in the SD metric space.

Proof. It is sufficient to prove that Q is sequentially compact, i.e. every infinite sequence of open squares
in C has a subsequence converging to an open square in C. Let {qi}∞

i=1 be an infinite sequence of open
squares in C. For every qi, let (Ai, Bi) be a pair of opposite corners. Because C is compact, it contains
Cl[q] and hence contains the points Ai and Bi. Hence the infinite sequence of pairs of points, {(Ai, Bi)}∞

i=1,
is an infinite sequence in C × C. C × C is compact because it is a finite product of compact sets. Hence,
the sequence has a subsequence converging to a limit point (A∗, B∗) ∈ C. From now on we assume that
{(Ai, Bi)}∞

i=1 is that converging subsequence. Let q∗ be the open square having A∗ and B∗ as two opposite
corners. We show that: (a) q∗ is an open square in C; (b) The subsequence {qi}∞

i=1 converges to q∗.
(a) q∗ is a obviously an open square by definition. We have to show that each point in q∗ is also a point

of C. To every square qi, attach a local coordinate system in which corner Ai has coordinates 0, 0 and corner
Bi has coordinates 1, 1 and every other point in Cl[qi] has coordinates in [0, 1]× [0, 1]. For every coordinate
(x, y) ∈ [0, 1]× [0, 1], let qi(x, y) be the unique point with these coordinates in Cl[qi] (e.g. Ai = qi(0, 0) and
Bi = qi(1, 1)).

For every (x, y), The sequence {qi(x, y)}∞
i=1 is a sequence of points which are all in C, and they converge

to q∗(x, y). Since C is closed, q∗(x, y) ∈ C.
(b) For every i, the area of the symmetric difference between q∗ and qi is bounded and satisfies the

following inequality:

dSD(q∗, qi) ≤ 4 ·max(d(A∗, Ai), d(B∗, Bi)) ·max(d(A∗, B∗), d(A∗, Bi), d(Ai, B∗), d(Ai, Bi))

Since all distances are bounded and d(A∗, Ai), d(B∗, Bi) converge to 0, the same is true for dSD(q∗, qi).
Hence, the subsequence {qi}∞

i=1 converges to q.
The previous paragraph proved that Q is sequentially compact. Hence it is compact.

In a similar way it is possible to prove similar results for other families S, such as the family of R-fat
rectangles or cubes.

3.D Non-Rectangular Pieces

In the main body of this chapter, the usable pieces were fat rectangles. Interestingly, we can get better re-
sults and simpler procedures by expanding the family of usable pieces to include other 2-fat polygons with
angles that are multiples 45 degrees. We call such polygons 2-FFDPs (2-fat Forty-Five Degree Polygons).21

Our procedure is based on the following geometTric facts:

1. A right-angled isosceles triangle (RAIT) is a 2-FFDP.

21This idea was suggested by Galya Segal-Halevi.
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2. Both a RAIT and a square can be partitioned into two congruent halves, each of which is a RAIT.

3. Each RAIT half in such a partition can be shrunk by translating the division line towards one of the
corners, such that the smaller piece is a RAIT and the larger piece is a 2-FFDP.

We present a procedure for dividing a cake that can be either a RAIT or a square. The procedure
requires that for every agent i: Vi(C) ≥ max(1, 2n− 2). It returns n disjoint 2FFDPs {Xi}n

i=1 such that for
every agent i: Vi(Xi) ≥ 1.

The procedure is developed by induction on the number of agents. When there is a single agent (n = 1),
he can just be given the entire cake, which is a 2FFDP with value at least 1. We now assume that we can
handle any number of agents less than n. Now there are n agents (n ≥ 2), each of whom values C as at
least 2n− 2. We proceed as follows.

(1) Eval auction. Cut C to two congruent RAITs: C′ and C′′:

C′

C′′

C′

C′′

Do an eval auction on C′. Order the agents in a descending order of their bid, V1(C′) ≥ · · · ≥ Vn(C′), and
let n′ be the largest integer with:

Vn′(C′) ≥ max(2n′ − 2, 1)

If n′ = n then all agents value C′ as the entire cake, so the other parts of the cake can be discarded and the
division procedure can start again with C′ as the cake. Hence, we assume that n′ < n. There are two main
cases to consider:

• Easy case: 1 ≤ n′ ≤ n− 2. Make a diagonal guillotine cut between C′ and C′′. Divide C′ recursively
among the n′ winners.

The n− n′ losers value C′ as less than max(2(n′ + 1)− 2, 1) = 2n′, so the value the remainder C′′ as
at least (2n− 2)− 2n′ = 2(n− n′)− 2. Since n− n′ ≥ 2, this value is also larger than 1, so we can
divide C′′ recursively among the n− n′ losers.

• Hard case: n′ = 0. This means that all agents value C′ as less than 1, so they value C′′ as more than
2n− 1.

We have to shrink C′′ towards the corner, until one of the agents decides that it is better to take a
piece outside C′′ and leave C′′ to the remaining n− 1 agents. This solution is implemented using a
mark auction, which is described in step (2) below. But before proceeding there is one more case that
must be handled:

• Mixed case: n′ = n− 1. This is handled according to the bid of the single losing agent (agent n): if
Vn(C′) < 2n− 1, then the losing agent values C′′ as more than 1, so we can proceed as in the Easy
case (the winning agents receive C′ and the losing agent receives C′′). Otherwise, Vn(C′) ≥ 2n− 1,
so all agents value C′ as at least 2n− 1 (because the agents are ordered in descending order of their
bid). Switch the roles of C′ and C′′ and proceed as in the hard case to the next auction.

(2) Mark auction. Ask each agent to mark a 2FFDP with a value fo exactly 1, whose complement is a
RAIT adjacent to the corner of C′:
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The winning bid (marked by thicker dots above) is a 2FFDP. It can be given to the winner, who values it as
exactly 1 so i

The remaining cake is a RAIT and its value for the remaining n − 1 agents is at least V(C) − 1 ≥
2n− 1 ≥ max(2(n− 1)− 2, 1). Divide it recursively among the losers.

This procedure proves:

Claim 3.D.1. For every n ≥ 2:

Prop(RAIT, 2 FFDPs, n) ≥ 1
2n− 2

Prop(Square, 2 FFDPs, n) ≥ 1
2n− 2

The procedure is clearly much simpler than when the pieces must be fat rectangles (as in Subsection
3.5.1) and the proportionality coefficient is better. In other words, it is easier to divide a cake fairly when
45-degree polygons are allowed. This might explain why practical land allocation maps usually contain
more than just rectangles.
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(a) (b) (c)

Figure 4.1: A square land-estate has to be divided between two people. The land-estate is mostly barren,
except for three water-pools (discs). The agents have the same preferences: each agent wants a square
land-plot with as much water as possible. The squares must not overlap. Hence:
(a) It is impossible to give both agents more than 1/3 of the water. Hence:
(b) An envy-free division must give each agent at most 1/3 of the water.
(c) But such a division cannot be Pareto-efficient since it is dominated by a division which gives one agent
1/3 and the other 2/3 of the water.
Hence, a Pareto-efficient envy-free allocation does not exist.

4.1 Introduction

In the previous chapter we focused on a single measure of fairness: proportionality. Our aim was to
guarantee all agents a certain fraction of their total cake value, and we tried to make this fraction as large
as possible.

In the present chapter we add a second measure of fairness: envy-freeness. Our aim now is to make sure
that each agent believes that his/her allocated piece is at least as good as any other piece.

Envy-freeness on its own is trivially satisfied by the empty allocation. The task becomes more interest-
ing when envy-freeness is combined with an efficiency criterion. The most common such criterion is Pareto
efficiency. Indeed, Weller (1985) has proved that, when the agents’ preferences are represented by non-
atomic measures, there always exists a competitive-equilibrium with equal-incomes, and the equilibrium
allocation is both Pareto-efficient and envy-free. However, Weller’s equilibrium allocation gives no guar-
antees about the geometric shape of the allotted pieces. A “piece” in his allocation might even be a union of
a countable number of disconnected cake-bits. So, Weller’s positive result is valid only when the agents’
preferences ignore the geometry of their allotted pieces. While such preferences may make sense when
dividing an actual edible cake, they are not so sensible when dividing land.

Berliant and Dunz (2004) have studied a multi-dimensional cake model. Their results are mostly neg-
ative: when general value measures are combined with geometric preferences, a competitive-equilibrium
might not exist. In fact, even regardless of competitive-equilibrium, a Pareto-efficient-envy-free allocation
might not exist, as we show in Figure 4.1.

Thus, to get an envy-free allocation among agents with geometric preferences, we must replace Pareto-
efficiency with a different efficiency criterion. A natural candidate is proportionality — every agent should
receive at least 1/n of the total cake value. Since with geometric preferences, a proportional division does
not always exist (see Figure 4.1), we relax the proportionality requirement and consider partial proportion-
ality. Partial proportionality means that each agent receives a piece worth at least a fraction p of the total
cake-value, where p is a positive constant, 0 < p ≤ 1/n (see definition in section 2.5 in page 7). Obviously
we would like p to be as large as possible.

In the previous chapter, we showed that partial-proportionality can be attained in various geometric
settings. For example, when there is a square cake and two agents who want square pieces, each agent
can be guaranteed at least a fraction 1/4 of the total cake-value, and this is the largest fraction that can be
guaranteed. However, these results did not consider envy. This raises the following question, which is at
the heart of the present chapter:

When each agent wants a piece with a given geometric shape, what is the largest fraction of the
cake-value that can be guaranteed to every agent in an envy-free allocation?

The following example shows that existing cake-cutting procedures are insufficient for answering this
question.
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Example 4.1.1. You and a partner are going to divide a square land-estate. It is 100-by-100 square meters
and its western side is adjacent to the sea. Your desire is to build a house near the sea-shore. You decide to
use the classic procedure for envy-free division: “You cut, I choose”. You let your partner divide the land
to two plots, knowing that you have the right to choose the plot that is more valuable according to your
personal preferences. Your partner makes a cut parallel to the shoreline at a distance of only 1 meter from
the sea. 1 Which of the two plots would you choose? The western plot contains a lot of sea shore, but it is
so narrow that it has no room for building anything. On the other hand, the eastern plot is large but does
not contain any shore land. Whichever plot you choose, the division is not proportional for you, because
your utility is far less than half the utility of the original land estate.

Of course the cake could be cut in a more sensible way (e.g. by a line perpendicular to the sea), but
the current division procedures say nothing about how exactly the cake should be cut in each situation in
order to guarantee that the division is fair in a way that respects the geometric preferences. While the cut-
and-choose procedure still guarantees envy-freeness, it does not guarantee partial-proportionality since it
does not guarantee any positive utility to agents who want square pieces.

This paper presents cake-cutting procedures that guarantee both envy-freeness and partial-proportionality.
Our procedures focus on agents who want fat pieces — pieces with a bounded length/width ratio, such as
squares (see definition in subsection 2.6 on page 8). The rationale is that a fat shape is more convenient to
work with, build on, cultivate, etc.

4.1.1 Results

We prove that envy-freeness and partial-proportionality are compatible in progressively more general geo-
metric scenarios. Our proofs are constructive: in every geometric scenario (geometric shape of the cake and
preferred shape of the pieces), we present a procedure that divides the cake with the following guarantees:

• Envy-freeness: every agent weakly prefers his/her allotted piece over the piece given to any other
agent.

• Partial-proportionality: every agent receives a piece worth for him at least a fraction p of his total
cake-value, where p is a positive constant that depends on the geometric requirements.

In the following theorems, the partial-proportionality guarantee p is given in parentheses.

Theorem 4.1. When dividing a cake to two agents, there is a procedure for finding an envy-free and partially-
proportional allocation in the following cases:

(a) The cake is square and the usable pieces are squares (p ≥ 1/4).
(b) The cake is an R-fat rectangle and the usable pieces are R-fat rectangles, where R ≥ 2 (p ≥ 1/3).
(c) The cake is an arbitrary R-fat object and the pieces are 2R-fat, where R ≥ 1 (p ≥ 1/2).

Value-shape trade-off: Theorem 4.1 illustrates a multiple-way trade-off between value and shape. Con-
sider two agents who want to divide a square land-estate with no envy. They have the following options:

• By projecting a 1-dimensional division obtained by any classic cake-cutting procedure, they can
achieve a proportional allocation (a value of at least 1/2) with rectangular pieces but with no bound
on the aspect ratio — the pieces might be arbitrarily thin.

• By (a), they can achieve an allocation with square pieces but only partial proportionality — the pro-
portionality might be as low as 1/4.

• By (b), they can achieve a proportionality of 1/3 with 2-fat rectangles, which is a compromise between
the previous two options.

• By (c), they can achieve an allocation that is both proportional and with 2-fat pieces, but the pieces
might be non rectangular.

1The reason why he decided to cut this way is irrelevant since a fair division procedure is expected to guarantee that the
division is fair for every agent playing by the rules, regardless of what the other agents do.
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The proportionality constants in Theorem 4.1 are tight in the following sense: it is not possible to guaran-
tee an allocation with a larger proportionality, even if envy is allowed. This means that envy-freeness is
compatible with the largest possible proportionality — we don’t have to compromise on proportionality to
prevent envy.

Our second theorem extends these results to any number of agents.

Theorem 4.2. When dividing a cake to n agents, there is a procedure for finding an envy-free and partially-
proportional allocation in the following cases:

(a) The cake is square and the usable pieces are squares (p ≥ 1/(4n2)).
(b) The cake is an R-fat rectangle and the usable pieces are R-fat rectangles, where R ≥ 1 (p ≥ 1/(4n2)).
(c) The cake is a d-dimensional R-fat object and the pieces are dn1/deR-fat,2 where d ≥ 2 and R ≥ 1 (p ≥ 1/n).

Value-shape trade-off: Part (a) and part (c) are duals in the following sense:

• Part (a) guarantees an envy-free division with perfect pieces (squares) but compromises on the pro-
portionality level;

• Part (c) guarantees an envy-free division with perfect proportionality (1/n) but compromises on the
fatness of the pieces.

The “magnitude” of the first compromise is 4n, since the proportionality drops from 1/n to 1/(4n2). We
do not know if this magnitude is tight: we know that it is possible to attain a division with square pieces
and a proportionality of 1/O(n) which is not necessarily envy-free Segal-Halevi et al. (2017), but we do not
know if a proportionality of 1/O(n) is compatible with envy-freeness.

The “magnitude” of the second compromise is dn1/de. This magnitude is asymptotically tight. We
prove that, in order to guarantee a proportional division of an R-fat cake, with or without envy, we must
allow the pieces to be Ω(n1/d)R-fat.

4.1.2 Related Work

(See also the Related Work subsection in the previous chapter, page 14).
The main challenge in two-dimensional cake-cutting is that utility functions that depend on geometric

shape are not additive. For example, consider an agent who wants to build a square house the utility of
which is determined by its area. The utility of this agent from a 20 × 20 plot is 400, but if this plot is
divided to two 20× 10 plots, the utility from each plot is 100 and the sum of utilities is only 200. Most
existing procedures for proportional cake-cutting assume that the valuations are additive, so they are not
applicable in our case. While there are some previous works on cake-cutting with non-additive utilities,
they too cannot handle geometric constraints:

• Berliant et al. (1992); Maccheroni and Marinacci (2003) focus on sub-additive, or concave, utility func-
tions, in which the sum of the utilities of the parts is more than the utility of the whole. These utility
functions are inapplicable in our scenario because, as illustrated in the previous paragraph, utility
functions that consider geometry are not necessarily sub-additive — the sum of the utilities of the
parts might be less than the utility of the whole.

• Dall’Aglio and Maccheroni (2009) do not explicitly require sub-additivity, but they require preference
for concentration: if an agent is indifferent between two pieces X and Y, then he prefers 100% of X to
50% of X plus 50% of Y. This axiom may be incompatible with geometric constraints: the agent in the
above example is indifferent between the two 20× 10 rectangles, but he prefers 50% of their union
(the 20× 20 square) to 100% of a single rectangle.3

• Sagara and Vlach (2005); Hüsseinov and Sagara (2013) consider general non-additive utility functions
but provide only non-constructive existence proofs.

• Su (1999); Caragiannis et al. (2011); Mirchandani (2013) provide practical division procedures for
non-additive utilities, but they crucially assume that the cake is a 1-dimensional interval and cannot
handle two-dimensional constraints.

2dxe denotes the ceiling of x — the smallest integer which is larger than x.
3We are grateful to Marco Dall’Aglio for his help in clarifying this issue.
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Cake Pieces Agents Impossibility Possibility
Square Squares 2 1/4 1/4

R-fat rectangle R-fat rectangles (R ≥ 2) 2 1/3 1/3
R-fat object 2R-fat objects 2 1/2 1/2

Square Squares n 1/(2n) 1/(4n2)
R-fat rectangle R-fat rectangles n 1/(2n− 1) 1/(4n2)

R-fat object dn1/deR-fat objects n 1/n 1/n

Table 4.1: Summary of results for geometric envy-free division: upper and lower bounds on the level of
attainable proportionality.

When envy-free division protocols are applied to agents with non-additive utility functions, the division
is still envy-free, but the utility per agent might be arbitrarily small. This is true for cut-and-choose (as
shown in Example 4.1.1 above) and it is also true for all other procedures for envy-free division that we
are aware of (Stromquist (1980); Brams and Taylor (1995); Reijnierse and Potters (1998); Su (1999); Barbanel
and Brams (2004); Manabe and Okamoto (2010); Cohler et al. (2011); Deng et al. (2012); Kurokawa et al.
(2013); Chen et al. (2013); Aziz and Mackenzie (2016)).

Our way to cope with this challenge is to explicitly handle the geometric constraints in the procedures.
The main tool we use is the geometric knife function.

Moving-knife procedures have been used for envy-free cake-cutting since its earliest years (Dubins and
Spanier, 1961; Stromquist, 1980; Brams et al., 1997; Saberi and Wang, 2009). For example, consider the
following simple procedure for envy-free division among two agents. A referee moves a knife slowly over
the cake, from left to right. Whenever an agent feels that the piece to the left of the knife is worth for him
exactly half the total cake value, he shouts "stop!". Then, the cake is cut at the current knife location, the
shouter receives the piece to its left and the non-shouter receives the piece to its right.

In this paper we formalize the notion of a knife and add geometric constraints guaranteeing that the
final pieces have both the desired geometric shape and a sufficiently high value.

4.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal definitions).

• C is the cake to be divided. In this chapter it will be a square or a fat object in Rd.

• S is the family of pieces that are considered usable. An S-piece is an element of S. In this chapter it will
be the family of squares or of fat objects.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece Xi.

• For each agent i ∈ {1, . . . , n}, VS
i (Xi) is agent i’s utility of the piece Xi. It is the value-measure of the

most valuable S-piece contained in Xi.

When the utilities of all agents are determined by S-value functions, we can restrict our attention to alloca-
tions in which each agent receives an S-piece. An S-allocation is a vector of n S-pieces X = (X1, ..., Xn), one
piece per agent, such that the Xi are pairwise-disjoint and their union is contained in C.

An S-allocation X is called envy-free if the utility of an agent from his allocated S-piece is at least as large
as his utility from every piece allocated to another agent:

∀i, j ∈ {1, ..., n} : VS
i (Xi) ≥ VS

i (Xj)

In addition to envy-freeness, an allocation is assessed by the the fraction of the total cake value that is given
to each agent. An allocation is called proportional if every agent receives a piece worth for him at least 1/n
of the total cake value. Since a proportional S-allocation does not always exist (see e.g. Figure 4.1), we
define:

Definition 4.2.1. For a cake C, a family of usable pieces S and an integer n ≥ 1, the envy-free proportion-
ality of C, S and n, marked PropEF(C, S, n), is the largest fraction p ∈ [0, 1] such that, for every set of n
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value measures (Vi, ..., Vn), there exists an envy-free S-allocation (X1, ..., Xn) for which: 4

∀i :
Vi(Xi)

Vi(C)
≥ p

This is very similar to the definition of Prop(C, S, n) - Definition 3.2.1 on page 16. The only difference is
that in Prop(C, S, n), the supremum is taken over all allocations, and in PropEF(C, S, n), the supremum is
taken only on envy-free allocations. Obviously, because the supremum in PropEF(C, S, n) is taken over a
smaller set:

∀C, n, S : PropEF(C, S, n) ≤ Prop(C, S, n)

This means that, in theory, if we want to guarantee that there is no envy, we may have to "pay" in terms of
proportionality. One of the goals of the present research is to study if and how much we may have to pay.

Classic cake-cutting results imply that for every cake C:

Prop(C, All, n) = PropEF(C, All, n) = 1/n

where All is the collection of all pieces. That is: when there are no geometric constraints, every cake can be
divided among every group of n agents in an envy-free allocation in which the utility of each agent is at
least 1/n.

Our challenge in the rest of this paper will be to establish bounds on PropEF(C, S, n) for various com-
binations of C and S. All our possibility results (lower bounds) are on PropEF(C, S, n) and therefore are
also valid for Prop(C, S, n). Similarly, all the impossibility results (upper bounds) proved in section 3.3 on
page 16 are for Prop(C, S, n) and therefore are also valid for PropEF(C, S, n).

4.3 Geometric Preliminaries

Example 4.1.1 illustrates that, in order to achieve a fair division that respects the geometric preferences, we
should constrain the ways in which agents are allowed to cut the cake. This requires several definitions of
geometric concepts, which are the topic of the present section.

4.3.1 Geometric loss

A key geometric concept in our analysis is the geometric loss — the maximum factor by which the utility of
an agent can be reduced by his insistence on using pieces only from family S.

Definition 4.3.1. For a piece C and family of usable pieces S, the geometric loss factor of C relative to S is:

Loss(C, S) := sup
V

V(C)
VS(C)

where the supremum is over all finite absolutely-continuous value measures V having VS(C) > 0. If there
is no supremum, then we write Loss(C, S) = ∞.

When C ∈ S the loss is 1, which means is no loss, since in this case VS(C) = V(C). When C /∈ S, the
loss is generally larger than 1. For example, if C is a 30-by-20 rectangle. The largest square contained in C is
20-by-20. Hence, if the value density is uniform over C (as in Figure 4.2/a), then V(C)

VS(C) =
600
400 = 3

2 , implying
that Loss(C, Squares) ≥ 3/2. But the loss may be larger: suppose V is uniform over the right and left sides
of C (as in Figure 4.2/b). In this case V(C)

VS(C) = 2, implying that Loss(C, Squares) ≥ 2. As we will see in
Subsection 4.3.3, the loss in this case is exactly 2, and in general the loss of a rectangle with a length/width
ratio of L is dLe; a thinner rectangle has a larger loss.

For some combinations of C and S, the geometric loss factor might be infinite. For example, if C is a
circle and that V is nonzero only in a very narrow strip near the perimeter (as in Figure 4.2/c), any square

4Shortly: PropEF(C, S, n) = infV supX mini Vi(Xi)/Vi(C), where the infimum is on all combinations of n value measures
(V1, ..., Vn), the supremum is on all envy-free S-allocations (X1, ..., Xn) and the minimum is on all agents i ∈ {1, ..., n}.
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a. V(C)
VS(C) =

3
2

Loss(C, S) ≥ 3
2

b. V(C)
VS(C) = 2

Loss(C, S) = 2
c. V(C)

VS(C) unbounded

Loss(C, S) = ∞

Figure 4.2: Geometric loss factors relative to the family of squares.

contained in C intersects the valuable strip only in the corners. and the intersection might be arbitrarily
small. Hence, VS(C) might be arbitrarily small and Loss(C, Squares) = ∞.

4.3.2 Chooser Lemma

We now relate the geometric loss factor to cake partitions. Our goal is to prove that, if a cake is partitioned
such that the sum of the geometric losses of its parts is sufficiently small, then an agent can choose at least
one part with a large value. Formally:

Lemma 4.3.2. For every cake C, integer m, partition X1 t · · · t Xm = C, family S and value measure V:

∃j : VS(Xj) ≥
V(C)

∑m
i=1 Loss(Xi, S)

Proof. Denote the denominator in the right-hand side by:

Loss(X, S) :=
m

∑
i=1

Loss(Xi, S)

By additivity of V:

m

∑
i=1

V(Xi) = V(C) (4.1)

Multiply both sides of (4.1) by the Loss(X, S) = ∑m
i=1 Loss(Xi, S):

m

∑
i=1

V(Xi) · Loss(X, S) =
m

∑
i=1

Loss(Xi, S) ·V(C)

By the pigeonhole principle, at least one of the m summands in the left-hand side must be greater than or
equal to the corresponding summand in the right-hand side. I.e., there exists j for which:

V(Xj) · Loss(X, S) ≥ Loss(Xj, S) ·V(C)

By Definition 4.3.1 and the definition of supremum, for every value measure V:

Loss(Xj, S) ≥ V(Xj)

VS(Xj)

Combining the above two inequalities yields:

V(Xj) · Loss(X, S) ≥ V(Xj) ·V(C)
VS(Xj)
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which is equivalent to:

VS(Xj) ≥
V(C)

Loss(X, S)

Motivated by the Chooser Lemma and its proof, we define the expression Loss(X, S) := ∑m
i=1 Loss(Xi, S)

as the geometric loss of the partition X. The Chooser Lemma implies that smaller geometric-loss is better for
the chooser. This is easy to see in Example 4.1.1, where a 100-by-100 land-estate is divided using cut-and-
choose:

• A partition to 100-by-1 and 100-by-99 rectangles has a geometric loss of 102 (the loss of the 100-by-1
sliver is 100 and the loss of the 100-by-99 rectangle is 2). Hence, the utility guarantee for a chooser
who wants square pieces is only 1/102.

• In contrast, a partition to two 100-by-50 rectangles has a geometric loss of 4 (2+2). By Lemma 4.3.2,
the chooser can always get a square with a utility of at least 1/4.

We will often use this simple implication of the Chooser Lemma:

Corollary 4.3.3 (Chooser Corollary). Suppose a cake-partition has a geometric loss of at most M. Each of two
agents chooses a best piece, and the choices are different. Then the resulting allocation is envy-free, and each agent’s
value is at least 1/M of the total cake-value.

4.3.3 Cover Numbers and Cover Lemma

Since smaller geometric loss is better, it is useful to have an upper bound on the geometric loss. Our upper
bound uses the Cover Number — see Definition 3.4.3 on page 26.

Lemma 4.3.4. For every cake C and family S:

Loss(C, S) ≤ CoverNum(C, S)

Proof. Let m = CoverNum(C, S). By definition of CoverNum, there are m S-pieces X1, ..., Xm, possibly
overlapping, that cover the cake C:

X1 ∪ X2 ∪ ...∪ Xm = C

Let V be any value measure. By additivity:

V(X1) + V(X2) + ... + V(Xm) ≥ V(C)

By the pigeonhole principle, there is at least one piece Xi ∈ S with:

V(Xi) ≥ V(C)/m

On the other hand, since Xi is an S-piece contained in C, its value is bounded by the supremum VS:

VS(C) ≥ V(Xi)

Combining the above two inequalities yields:

VS(C) ≥ V(C)/m

Combining this into the definition Loss(C, S) = supV
V(C)
VS(C) , yields:

Loss(C, S) ≤ sup
V

V(C)
V(C)/m

= sup
V

m = m
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Loss(KC , Rectangles) = 2
a. Loss(KC , Squares) = ∞

Loss(KC , Rectangles) = 4
b. Loss(KC , Squares) = 4

b

Loss(KC , Rectangles) = 3
c. Loss(KC , Squares) = 3

Loss(KC , Rectangles) = 3
d. Loss(KC , Squares) = 4

Loss(KC , Rectangles) = 3
e. Loss(KC , Squares) = ∞

Figure 4.3: Several knife functions. The area filled with horizontal lines marks KC(t) in a certain interme-
diate time t ∈ (0, 1). Dotted lines mark future knife locations.

By Definition 4.3.1, for every value measure V: VS(C) ≥ V(C)
Loss(C,S) . By Lemma 4.3.4, this implies VS(C) ≥

V(C)
CoverNum(C,S) . Thus, for example, in the 30 × 20 rectangle of Figure 4.2, CoverNum(C, Squares) = 2 so

Loss(C, Squares) ≤ 2 so VS(C) ≥ V(C)/2. This means that every agent, with any value measure, can get
from C a utility of at least half its total value.

4.3.4 Knife functions

Moving knives have been used to cut cakes ever since the seminal paper of Dubins and Spanier (1961). We
generalize the concept of a moving knife to handle geometric shape constraints.

Definition 4.3.5. Given a cake C, a knife function on C is a function KC from the real interval [0, 1] to pieces
of C with the following monotonicity property: for every t′ ≥ t, KC(t′) ⊇ KC(t).

If KC(0) = C0 and KC(1) = C1, where C0 ⊆ C1 ⊆ C, we say that KC is a knife function from C0 to C1.
The complement of KC, marked KC, is defined by:

KC(t) := C \ KC(t)

Some examples are shown in Figure 4.3.
A knife function KC on a cake C can be used to attain an envy-free division of C between two agents:

Generic Knife Procedure
Each agent i ∈ {A, B} selects a time ti ∈ [0, 1] such that:

VS
i (KC(ti)) = VS

i (KC(ti))

Rename the agents, if needed, such that tA ≤ tB.
Select any time t∗ ∈ [tA, tB].
Give KC(t∗) to agent A and KC(t∗) to agent B.

This procedure obviously generates an envy-free division, since it gives to each agent a piece worth for
him at least as much as the other piece. The challenge is in the first step: we must be sure that each agent
i can, indeed, select a time ti such that the S-values on both sides of the knife are equal. This requires that
both VS

i (KC(t)) and VS
i (KC(t)) change continuously as a function of t. Hence, we define:

Definition 4.3.6. Given a family S of usable shapes, a knife-function K is called S-good if for every absolutely-
continuous value-measure V, both VS(K(t)) and VS(K(t)) are continuous functions of t.
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How can we find S-good knife-functions? In Appendix 4.A, we define two different properties of knife-
functions, each of which is a sufficient condition for S-goodness:

• S-smoothness means that the Lebesgue measure of K(t) is a continuous function of t, and that both
K(t) ∈ S and K(t) ∈ S. For example, the knife-function in Figure 4.3/a is rectangle-smooth (but not
square-smooth).

• S-continuity means (informally) that all S-pieces in K(t) grow continuously and all S-pieces in K(t)
shrink continuously; no S-piece with a positive area is created abruptly in K(t) and no S-piece with
a positive area is destroyed abruptly in K(t). All knife-functions in Figure 4.3 are square-continuous
(and also rectangle-continuous).

See Appendix 4.A for formal definitions, proofs and additional examples.
With an S-good knife, the Generic Knife Procedure can be executed:

Lemma 4.3.7. Let C be a cake and C0, C1 pieces such that: C0 ⊆ C1 ⊆ C. Let KC be an S-good knife-function from
C0 to C1. Assume that an agent has a value function V such that:

• VS(C0) ≤ VS(C \ C0)

• VS(C1) ≥ VS(C \ C1)

Then there exists a time ti ∈ [0, 1] in which the utilities on both sides of the knife are equal:

VS(KC(ti)) = VS(KC(ti))

Proof. When t = 0:
VS(KC(t)) = VS(C0) ≤ VS(C \ C0) = VS(KC(t))

and when t = 1:
VS(KC(t)) = VS(C1) ≥ VS(C \ C1) = VS(KC(t))

Since KC is S-good, by Definition 4.3.6 both VS(KC(t)) and VS(KC(t)) are continuous functions of t. Hence
the lemma follows from the intermediate value theorem.

4.3.5 Geometric loss of knife functions

When a knife function KC is “stopped” at a certain time t ∈ [0, 1], it induces a partition of the cake C to
the part which was already covered by the knife, KC(t), and the part not covered, KC(t). Based on this
partition, the geometric loss of the knife can be defined:

Definition 4.3.8. Let C be a cake, KC a knife function on C and S a family of pieces. Define the geometric
loss of KC as:

Loss(KC, S) = sup
t∈[0,1]

(
Loss(KC(t), S) + Loss(KC(t), S)

)

Whenever a knife is stopped, the resulting partition has a geometric loss of at most Loss(KC, S). There-
fore, we can expect such a knife to be useful for fairly dividing a cake among agents who want S-pieces.

Recall that the smallest possible Loss of a single piece is 1 (which means "no loss"); hence the smallest
possible loss of a knife function is 1+1=2. Some examples are illustrated in Figure 4.3, from left to right:

(a) Let C = [0, L] × [0, 1] and KC(t) = [0, L] × [0, t]. Both KC(t) and its complement are rectangles
so their geometric loss relative to the family of rectangles is 1. Hence Loss(KC, Rectangles) = 1 + 1 =
2. In contrast, the geometric loss of these rectangles relative to the family of squares is unbounded, so:
Loss(KC, Squares) = ∞.

(b) Let C = [0, 1]× [0, 1] and KC(t) = [0, t]× [0, t] ∪ [1− t, 1]× [1− t, 1]. For every t, KC(t) is a union of
two squares and its complement is also a union of two squares. By the Cover Lemma, each such union has
a geometric loss of 2 (relative to the family of squares). Hence, Loss(KC, Squares) = 2 + 2 = 4.

(c) Let C be the top-right quarter-plane and S the family of squares and quarter-planes (we consider
a quarter-plane to be a square with infinite side-length). Define: KC(t) = [0, x/(1− x)] × [0, x/(1− x)].
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KC(t) is a square and its complement can be covered by two quarter-planes, so the geometric loss of KC is
1+2=3.

(d) Let C = [0, 2]× [0, 2] and KC(t) = [0, t]× [0, t]. Note that KC(0) = ∅ and KC(1) = [0, 1]× [0, 1] =
the bottom-left quarter of C. For every t, KC(t) is a square and its complement is an L-shape, similar to the
L-shapes in Figure 3.6, which can be covered by 3 squares. Hence, Loss(KC, Squares) = 3 + 1 = 4.

(e) Let C = [0, 2]× [0, 2], C1 = C \ [0, 1]× [0, 1] (an L-shape), and KC(t) = C1 ∩ ([0, 2]× [0, t/2]). This is
a knife-function from ∅ to C1; it covers C1 continuously from bottom to top. The partition can be covered
by at most 2+1=3 rectangles, but its square-loss is not bounded.

Lemma 4.3.9. (Knife Lemma) Let C be a cake and C0, C1 pieces such that: C0 ⊆ C1 ⊆ C. Let KC be an S-good
knife-function from C0 to C1. If there are two agents and for every agent i:

- VS
i (C0) ≤ VS

i (C \ C0) and
- VS

i (C1) ≥ VS
i (C \ C1),

then C can be divided using the Generic Knife Procedure (see Subsection 4.3.4) and every agent playing by the rules
is guaranteed an envy-free share with a utility of at least:

max
(

VS
i (C0), VS

i (C \ C1),
1

Loss(KC, S)

)

Proof. Consider an agent, say Alice, who plays by the rules and declares a time tA for which VS
A(KC(tA)) =

VS
A(KC(tA)). Denote this equal utility by U. There are two cases: if tA ≤ t∗ ≤ tB, then Alice receives

KC(t∗), which contains KC(tA). Otherwise, tB ≤ t∗ ≤ tA, and Alice receives KC(t∗), which contains KC(tA)
(because KC is monotonically increasing). In both cases, Alice feels no envy and receives a utility of at least
U. This utility is bounded from below in three ways:

(a) U ≥ VS(C0), because the piece KC(ti) contains C0.
(b) U ≥ VS(C \ C1), because the complement piece KC(ti) contains C \ C1.
(c) U ≥ 1/Loss(KC, S) by the Chooser Lemma, since the loss of the partition is at most Loss(KC, S).

Note that the Generic Knife Procedure is discrete: it does not need to continuously move the knife until
an agent shouts “stop”; the agents are asked in advance in what time they would like to “stop the knife”.

The Chooser Lemma and the Knife Lemma are the main tools we use to construct division procedures.

4.4 Envy-Free Division for Two Agents

4.4.1 Squares and rectangles

Our first generic envy-free division procedure is based on a single knife function.

Lemma 4.4.1. (Single Knife Procedure). Let C be a cake, S a family of pieces and M ≥ 2 an integer. If there exists
an S-good knife-function KC from ∅ to C with

Loss(KC, S) ≤ M,

then

PropEF(C, S, 2) ≥ 1/M.

Proof. The cake can be divided using the Generic Knife Procedure, taking C0 = ∅ and C1 = C. The
assumptions of the Knife Lemma (4.3.9) hold trivially because C0 = C \ C1 = ∅. Hence each agent playing
by the rules receives an envy-free share worth at least 1/M.

The knife function in Figure 4.3/b is Square-good and its Square-loss is 4. Applying Lemma 4.4.1 to
that knife function yields our first sub-theorem:

Theorem 4.1(a).. PropEF(Square, Squares, 2) ≥ 1/4
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The generality of Lemma 4.4.1 allows us to get more results with no additional effort. For example:

• By the knife function of Figure 4.3/b: PropEF(Square, Square pairs, 2) ≥ 1/2. I.e., if each agent has
to receive a union of two squares (as is common when dividing land to settlers, e.g. one land-plot for
building and another one for agriculture, etc.), then a proportional division is possible since the knife
function in example (b) has a geometric loss of 2 relative to the family of square pairs.

• By Figure 4.3/c: PropEF(Quarter Plane, Generalized Squares, 2) ≥ 1/3.

All bounds presented above are tight in the strong sense stated in the introduction, i.e., it is not possible
to guarantee both agents a larger utility even if envy is allowed. This is obvious for the ≥ 1/2 results, since
a proportionality of 1/n is the best that can be guaranteed to n agents. For the other results, the matching
upper bounds are proved in Section 3.3 on page 16.

4.4.2 Cubes and archipelagos

In some cases it may be difficult to find a single knife function that covers the entire cake. This is so, for
example, when the cakes are multi-dimensional cubes or unions of disjoint squares. To handle such cases,
the following lemma suggests a generalized division procedure employing several knife functions.

Lemma 4.4.2. (Single Partition Procedure). Let C be a cake, S a family of pieces and M ≥ 2 an integer such that:
(a) C has a partition with a geometric loss of at most M:

m⊔

j=1

Cj = C

m

∑
j=1

Loss(Cj, S) ≤ M

(b) For every j, there are S-good knife functions from ∅ to Cj and from ∅ to Cj (where Cj := C \ Cj).
(c) For every part Cj, the geometric loss of the knife-function on Cj is at most M:

∀j : Loss(KCj , S) ≤ M

Then:

PropEF(C, S, 2) ≥ 1/M

Proof. C can be divided using the following procedure.
(1) Each agent chooses the part Cj that gives him maximum utility. If the choices are different, then by

the Chooser Corollary and condition (a), each agent receives an envy-free share worth at least 1/M, so we
are done

(2) If both agents chose the same part Cj, then ask each agent to choose either Cj or Cj (where Cj :=
C \ Cj). If the choices are different, then by the Chooser Corollary and condition (a), each agent receives an
envy-free share worth at least 1/M, so we are done. If the choices are identical then there are two cases:

(3-a) Both agents chose Cj. By condition (c), there exists a knife function KCj from ∅ to Cj with a
geometric loss of at most M. Apply the Generic Knife Procedure with that knife function. The requirements
of the Knife Lemma (4.3.9) are satisfied since for both agents, VS

i (∅) ≤ VS
i (C \∅) (trivially) and VS

i (Cj) ≥
VS

i (C \ Cj) (both agents preferred Cj to Cj). Hence, the Knife Lemma guarantees each agent an envy-free
share worth at least 1/Loss(KCj , S) ≥ 1/M.

(3-b) Both agents chose Cj. By condition (b), there exists a knife function KCj
from ∅ to Cj. There is no

guarantee about the geometric loss of KCj
, but this is fine since we will not use its geometric loss below.

Apply the Generic Knife Procedure. The requirements of the Knife Lemma (4.3.9) are met since for both
agents, VS

i (∅) ≤ VS
i (C \ ∅) (trivially) and VS

i (Cj) ≥ VS
i (C \ Cj) (both agents preferred Cj over Cj). The

Knife Lemma guarantees each agent an envy-free share with a utility of at least VS
i (C \ Cj) = VS

i (Cj). The
fact that in step (2) both agents chose Cj implies, by the Chooser Lemma, that ∀i : VS

i (Cj) ≥ 1/M.
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Figure 4.4: (a) A cake made of a union of 3 disjoint rectangles.
(b) Three knife functions, each having a geometric loss of at most 4, proving that
PropEF(C, rectangles, 2) ≥ 1/4.

Several applications of Lemma 4.4.2 are presented below.
(a) PropEF(Square, Squares, 2) ≥ 1/4. Proof : A square cake can be partitioned to a 2-by-2 grid of

squares. The loss of the partition relative to the family of squares is 4, satisfying condition (a). Each quarter
Cj has a knife-function with a loss of 4 (see Figure 4.3/d), satisfying condition (c). For each complement
Cj, we can use e.g. a sweeping-line knife-function, as illustrated in Figure 4.3/e (see Lemma 4.A.7 in the
appendix for a proof that such functions are S-good), satisfying condition (b).

The advantage of this result over the identical result presented in the previous subsection is that it can
be easily generalized to higher dimensions:

(b) Multi-dimensional cakes: PropEF(d dimensional cube, Squares, 2) ≥ 1/2d. Proof : C can be parti-
tioned to 2d sub-cubes of equal side-length. For each sub-cube Cj there is a knife function analogous to
Figure 4.3/d — a cube growing from the corner towards the center of C. Its geometric loss is 2d. For
each complement Cj, there is a sweeping-plane knife-function (analogous to Figure 4.3/e, as described in
Lemma 4.A.7).

(c) Archipelagos: Let C be an archipelago which is a union of m disjoint rectangular islands. Then
PropEF(C, Rectangles, 2) ≥ 1

m+1 . Proof : The geometric loss of the partition of C to m rectangles is obviously
m < m + 1, satisfying condition (a). For each part Cj, define a knife function KCj based on a line sweeping
from one side of the rectangle to the other side, similar to Figure 4.3/a. KCj(t) is always a rectangle.
Its complement can be covered by m rectangles: one rectangle to cover Cj \ KCj(t) and additional m − 1
rectangles to cover C \ Cj. Hence the geometric loss of every KCj is 1 + 1 + m − 1 = m + 1, satisfying
condition (c) (see Figure 4.4). A similar sweeping-line knife-function can be used for the complements,
satisfying condition (b).

(d) Let C be an archipelago which is a union of m disjoint square islands. Then PropEF(C, Squares, 2) ≥
1

m+3 . The proof is the same as in (c), the only difference being that each of the knife functions on the Cj is a
union of two squares, similar to Figure 4.3/b.

All bounds proved above are tight. The tightness of (a) is proved in Section 3.3. The tightness of (b)
can be proved by an analogous d-dimensional cake, with a water-pool in each of its 2d corners. (c) is tight
in the following sense: for every m there is a cake C, which is a union of m disjoint rectangles, having
Prop(C, Rectangles, 2) ≤ 1

m+1 . (d) is tight in a similar sense by a similar proof.

4.4.3 Fat rectangles

More types of cakes can be handled by adding partition steps.

Lemma 4.4.3. (Multiple Partition Procedure). Let C be a cake, S a family of pieces and M ≥ 2 an integer such
that:

(a) C has a partition C1, . . . , Cm with a geometric loss of at most M:

m⊔

j=1

Cj = C

m

∑
j=1

Loss(Cj, S) ≤ M
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Figure 4.5: A knife function with a geometric loss of 3, proving that PropEF(C, 2 f at rectangles, 2) ≥ 1/3.

(b) Every part Cj can be further partitioned such that, if Cj is replaced with its partition, then the geometric loss
of the resulting partition of C is at most M, i.e. for every j there exist C1

j , . . . , C
mj
j with:

mj⊔

k=1

Ck
j = Cj

∑
j′ 6=j

Loss(Cj′ , S) +
mj

∑
k=1

Loss(Ck
j , S) ≤ M

(c) For every j, k, there are S-good knife functions from ∅ to Cj and to Cj and to Ck
j and to Ck

j .
(d) For every j, k, the geometric loss of the knife function from ∅ to Ck

j is at most M:

∀j, k : Loss(KCk
j
, S) ≤ M

Then:

PropEF(C, S, 2) ≥ 1/M

Proof. The proof uses a refinement of the procedure used to prove Lemma 4.4.2. Steps (1) and (2) and (3-b)
are exactly the same. We have to refine case (3-a), in which both agents prefer Cj over Cj.

(3-a-1) Refine the partition of C by replacing Cj with its sub-partition:

(
⊔

j′ 6=j

Cj′) t (

mj⊔

k=1

Ck
j ) = C

Let each agent choose a best part from this refined partition. If the choices are different, then by condition
(b) and the Chooser Corollary, each agent receives an envy-free share worth at least 1/M.

(3-a-2) If both agents chose the same part from the main partition, e.g. Cj′ for some j′ 6= j, then by
condition (c) there exists a knife-function from ∅ to Cj (the part chosen by both agents at step 2). Apply the
Generic Knife Procedure. The requirements of the Knife Lemma (4.3.9) are satisfied since for both agents,
VS

i (∅) ≤ VS
i (C \ ∅) (trivially) and VS

i (Cj) ≥ VS
i (C \ Cj) (both agents prefer Cj to Cj). The Knife Lemma

guarantees each agent an envy-free share with utility at least VS
i (Cj). This Cj contains all other parts of

the main partition, including Cj′ . The fact that both agents chose Cj′ in the refined partition proves, by the
Chooser Lemma, that VS

i (Cj′) ≥ 1/M. Hence also VS
i (Cj) ≥ 1/M.

(3-a-3) If both agents chose the same part from the sub-partition, e.g. Ck
j for some k, then ask each agent

to choose either Ck
j or Ck

j (where Ck
j := C \ Ck

j ). If the choices are different, then by condition (b) and the
Chooser Corollary, each agent receives an envy-free share worth at least 1/M. If the choices are identical
then there are two cases:

(3-a-4-a) Both agents chose Ck
j . By condition (d), there exists a knife function KCk

j
from ∅ to Ck

j with a

geometric loss of at most M. Apply the Generic Knife Procedure with that knife function. The requirements
of the Knife Lemma (4.3.9) are satisfied since for both agents, VS

i (∅) ≤ VS
i (C \∅) (trivially) and VS

i (C
k
j ) ≥

VS
i (C \Ck

j ) (both agents preferred Ck
j over Ck

j ). Hence, the Knife Lemma guarantees each agent an envy-free
share worth at least 1/Loss(KCk

j
, S) ≥ 1/M.
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(3-a-4-b) Both agents chose Ck
j . By condition (c), there exists an S-good knife function from ∅ to Ck

j .
Apply the Generic Knife Procedure. The requirements of the Knife Lemma (4.3.9) are met since for both
agents, VS

i (∅) ≤ VS
i (C \ ∅) (trivially) and VS

i (C
k
j ) ≥ VS

i (C \ Ck
j ) (both agents preferred Ck

j over Ck
j ). The

Knife Lemma guarantees each agent an envy-free share with utility at least VS
i (C \ Ck

j ) = VS
i (C

k
j ). The fact

that in step (3-a-2) both agents chose Ck
j implies, by the Chooser Lemma, that VS

i (C
k
j ) ≥ 1/M.

Lemma 4.4.3 is used to get the second part of our Theorem 4.1:

Theorem 4.1(b). For every R ≥ 2:

PropEF(R f at rectangle, R f at rectangles, 2) ≥ 1/3

Proof. The proof relies on the following geometric fact: for every R ≥ 2, an R-fat rectangle can be bisected
to two R-fat rectangles using a straight line through the center of its longer sides (see Figure 4.5).

Apply Lemma 4.4.3 in the following way. Let C be an R-fat rectangle. Partition C in the middle of
its longer side. The two halves are R-fat so the geometric loss of the partition is 1 + 1 < 3, satisfying
condition (a). Each half can be further partitioned along its longer side to two rectangles, which are also
R-fat (each of these is exactly one quarter of C). When a part is replaced by its sub-partition, the geometric
loss of the resulting partition is thus 2 + 1 = 3, satisfying condition (b). Condition (c) is satisfied e.g.
by knife-functions based on sweeping lines, as in Figure 4.3/e. For each quarter-rectangle, there is a knife
function (growing from the corner towards the center, as in Figure 4.5) with a geometric loss of 3, satisfying
condition (d).

The bound of 1/3 is tight; see Subsection 3.3.4 on page 22.
Lemma 4.4.3 can be further refined by adding more sub-partition steps. For example, by adding a third

sub-partition step we can prove that if C is an archipelago of m disjoint R-fat rectangles (with R ≥ 2) then:

PropEF(C, R-fat rectangles, 2) ≥ 1
m + 2

and this bound is tight. The proof is a analogous to examples (c) and (d) after Lemma 4.4.2.
Note that the upper bound of 1/3 is valid when the pieces are R-fat rectangles for every finite R, while

the upper bound of 1/4 for square pieces is valid for every R < 2. This implies that 2-fat rectangles are a
good practical compromise between fatness and fairness: if we require fatter pieces (R < 2) then the pro-
portionality guarantee drops from 1/3 to 1/4, while if we allow thinner pieces (R > 2) the proportionality
remains 1/3 for all R < ∞.

4.4.4 Arbitrary fat objects

Our most general result involves cakes that are arbitrary Borel sets. The result is proved for cakes of any
dimensionality; Figure 4.6 illustrates the proof for d = 2 dimensions.

Theorem 4.1(c). For every R ≥ 1, If C is R-fat and S is the family of 2R-fat pieces then:

PropEF(C, S, 2) = Prop(C, S, 2) = 1/2

Proof. The proof uses Lemma 4.4.2 (the Single Partition Procedure). We show a partition of C to two pieces
and a knife-function on each piece. Scale, rotate and translate the cake C such that the largest cube con-
tained in C is B− = [−1, 1]d (Figure 4.6/a). By definition of fatness (see Subsection 2.6), C is now contained
in a cube B+ of side-length at most 2R.

Using the hyperplane x = 0, bisect the cube B− to two 2-by-1 boxes B1 = [−1, 0] × [−1, 1]d−1 and
B2 = [0, 1] × [−1, 1]d−1. This hyperplane also bisects C to two parts, C1 and C2 (Figure 4.6/b). Every
Cj contains Bj which contains a cube with a side-length of 1. Every Cj is of course still contained in B+

which is cube with a side-length of 2R. Hence every Cj is 2R-fat. Hence the geometric loss of the partition
C = C1 t C2, relative to the family or 2R-fat objects, is 2, satisfying condition (a) of Lemma 4.4.2.

For every j ∈ {1, 2}, define the following knife function Kj on Cj (see Figure 4.6/c,d):
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(a)

CB−

(b)

C1 C2

(c) (d)

Figure 4.6: Dividing a general R-fat cake to two people.
(a) The R-fat cake C and its largest contained square B− (the smallest containing square B+ is not shown).
(b) The sub-cakes C1 and C2 (solid), the two rectangles B1 and B2 (dotted) and their largest contained
squares (dashed).
(c) The knife function on C1 in t ∈ [0, 1

2 ].
(d) The knife function on C1 in t ∈ [ 1

2 , 1].

• For t ∈ [0, 1
2 ], Kj(t) = (Bj)

2t, i.e., the box Bi dilated by a factor of 2t. Hence Kj(0) = ∅ and Kj(
1
2 ) = Bj.

• For t ∈ [ 1
2 , 1], Kj(t) is any knife-function from Bj to Cj with continuous Lebesgue-measure (see Sub-

section 4.A.1 for a proof that such a function exists).

Kj(t) is always 2R-fat, since in [0, 1
2 ] it is a scaled-down version of the box Bj (which is 2-fat) and in [ 1

2 , 1] it
contains Bj and is contained in the cube B+. C \ Kj(t) is also 2R-fat, since it contains B3−j and is contained
in B+. Moreover, the Lebesgue measure of Kj(t) is a continuous function of t. Hence, by Subsection 4.A.1,
Kj is an S-good knife function, satisfying condition (b) of Lemma 4.4.2.

Since both Kj and Kj are 2R-fat, the geometric loss of Kj relative to the family of 2R-fat shapes is 1+ 1 =
2, satisfying condition (c) of Lemma 4.4.2.

All conditions of Lemma 4.4.2 are satisfied, and its conclusion is exactly the claimed theorem.

Theorem 4.1(c) implies that we can satisfy the two main fairness requirements: proportionality and envy-
freeness, while keeping the allocated pieces sufficiently fat. The fatness guarantee means that each allotted
piece: (a) contains a sufficiently large square, (b) is contained in a sufficiently small square. In the context
of land division, these guarantees can be interpreted as follows: (a) Each land-plot has sufficient room for
building a large house in a convenient shape (square); (b) The parts of the land that are valuable to the
agent are close together, since they are bounded in a sufficiently small square.

Finally we note that a different technique leads to a version of Theorem 4.1(c) which guarantee that
the pieces are not only 2R-fat but also convex (if the original cake is convex); hence an agent can walk
in a straight line from his square house to his valuable spots without having to enter or circumvent the
neighbor’s fields. See Appendix 4.B for details.

4.4.5 Between envy-freeness end proportionality

For all cakes C and families of usable pieces S studied in this section, we proved that there exists a pos-
itive constant p such that PropEF(C, S, 2) ≥ p. Moreover, for the cases in which p < 1/2, we proved in
Section 3.3 that Prop(C, S, 2) ≤ p (for the cases in which p = 1/2 the latter inequality is obvious). Since
PropEF(C, S, 2) ≤ PropEF(C, S, 2) always, we get that for all settings studied here:

PropEF(C, S, 2) = Prop(C, S, 2)

In other words, in these cases, envy-freeness is compatible with the best possible partial-proportionality.
It is an open question whether this equality holds for every combination of cakes C and families S.
What can we say about the relation between proportionality and envy-freeness for arbitrary C and S?

In addition to the trivial upper bound PropEF(C, S, 2) ≤ Prop(C, S, 2), we have the following lower bound:

Lemma 4.4.4. For every cake C and family S:

PropEF(C, S, 2) ≥ Prop(C, S, 2) · inf
s∈S

PropEF(s, S, 2)
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A:1 C:3 B:1 A:3

B:1

C:2

A:1A:1

B:2

C:3

A:2

*

(c)

Figure 4.7: An illustration of the Simmons-Su procedure for n = 3 agents, A B and C.
(a) A triangulation of the simplex of partitions in which each vertex is assigned to an agent.
(b) Each vertex is labeled with the index of the piece preferred by its assigned agent. The fully-labeled
triangle is starred.
(c) The process is repeated with a finer triangulation of the original simplex.

Proof. Let p = Prop(C, S, 2) and e = infs∈S PropEF(s, S, 2). The following meta-procedure yields an envy-
free partition of C in which the utility of each agent is at least p · e.

By the definition of Prop(C, S, 2), there exists an S-allocation X = (X1, X2) with a proportionality of at
least p, i.e, each agent i receives an S-piece Xi with Vi(Xi) ≥ p.

Ask each agent whether he envies the other agent and proceed accordingly:
(a) If no agent envies the other agent, then the partition is already envy-free. The utility of each agent

is at least p, which is at least p · e (since e ≤ 1).
(b) If both agents envy each other, then let them switch the pieces. The resulting partition is envy-free

and the utility of each agent is more than p ≥ p · e.
(c) The remaining case is that only one agent envies the other agent. W.l.o.g, assume it is agent 1 who

envies agent 2. This means that the S-piece X2 has a utility of at least p to both agents. By the assumptions
of the lemma, since X2 ∈ S, PropEF(X2, S, 2) ≥ e. Therefore, there exists an envy-free S-allocation of X2 in
which the utility of each agent i is at least e ·Vi(X2) ≥ e · p.

So by previous results we have the following partial-compatibility results for every cake C:

• Prop(C, Squares, 2) ≥ PropEF(C, Squares, 2) ≥ 1
4 Prop(C, Squares, 2)

• Prop(C, R f at rects, 2) ≥ PropEF(C, R f at rects, 2) ≥ 1
3 Prop(C, R f at rects, 2) (for R ≥ 2)

• Prop(C, Rectangles, 2) ≥ PropEF(C, Rectangles, 2) ≥ 1
2 Prop(C, Rectangles, 2)

4.5 Envy-Free Division For n agents

4.5.1 The one-dimensional procedure

Existence of envy-free allocations in one dimension was first proved by Stromquist (1980). A procedure for
finding such allocations was developed by Simmons and first described by Su (1999). Our procedure for n
agents is a generalization of that procedure. We briefly describe the 1-dimensional procedure below.

The cake is the 1-dimensional interval [0, 1] and S is the family of intervals. A partition of the cake to n
intervals can be described by a vector of length n whose elements are the lengths of the intervals. The sum
of all lengths in a partition is 1, so the set of all partitions is an (n − 1)-dimensional simplex in Rn. The
procedure proceeds as follows (see Figure 4.7):

(a) Preparation. Triangulate the simplex of partitions to a collection of (n− 1)-dimensional sub-simplexes.
Assign each vertex of the triangulation to one of the n agents, such that in each sub-simplex, all n agents
are represented. Su shows that there always exists such a triangulation.

(b) Evaluation. Recall that each vertex of the triangulation corresponds to a partition of the cake to n
intervals. For each vertex, ask its assigned agent: “if the cake is partitioned according to this vertex, which
piece would you prefer?”. The answer is an integer between 1 and n; label that vertex with that integer.

The labeling created in step (b) has a special structure. First, each of the n main vertexes of the large
simplex corresponds to a partition in which a single piece i ∈ {1, . . . , n} encompasses the entire cake and
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all other pieces are empty. Any agent prefers the entire cake over an empty piece, so this vertex will surely
be labeled by i (see Figure 4.7/b, where the three vertexes of the large triangle are labeled by 1, 2 and 3).
Moreover, each point on the segment between vertex i1 and vertex i2 corresponds to a partition in which
the cake is divided between pieces i1 and i2, and all other pieces are empty. Therefore, each such point will
be labeled by either i1 or i2. The same is true in any number of dimensions: in each face of the simplex, all
interior points are labeled by one of the labels of the main vertexes that span that face. A labeling that has
such a structure is called a Sperner labeling. By Sperner’s lemma, any triangulation with a Sperner labeling
has a fully-labeled sub-simplex, in which all vertexes are labeled differently.

(c) Refinement. Steps (a) and (b) can be repeated again and again, each time with a finer triangulation.
This yields an infinite sequence of fully-labeled simplexes. By compactness of the simplex, there is a subse-
quence that converges to a single point. By the continuity of the agents’ valuations, this point corresponds
to a partition in which each of the n agents prefers a different piece. By definition, this partition is envy-free.

Note that the above procedure is infinite — the envy-free partition is found only at the limit of an
infinite sequence. In fact, Stromquist (2008) proved that when n ≥ 3, an envy-free partition to n agents with
connected pieces cannot be found by a finite procedure. Therefore, Simmons’ infinite procedure is the best
that can be hoped for. Deng and Qi and Saberi (Deng et al., 2012) show that an approximately-envy-free
division can be found in bounded time. For example, suppose that an interval is divided among several
agents and they all agree that a 1 centimeter movement of the border between their plots is irrelevant.
Then the simplex of partitions can be divided to sub-simplices of side-length 1 cm. If the total length of the
cake is L centimeters, then a fully-labeled simplex can be found using O(Ln−2) queries (Deng et al., 2012,
Theorem 5). All points in that simplex correspond to a division that is approximately-envy-free up to the
agents’ tolerance.

4.5.2 Knife tuples

Both Stromquist’s existence proof and the Simmons–Su and the Deng–Qi–Saberi algorithms do not work
directly on the cake — they work on the unit simplex, each point of which represents a cake-partition.
Therefore, we can extend these algorithms to two dimensions if we find an appropriate way to map each
point of the unit simplex to a two-dimensional cake-partition.

Our main tool is a knife-tuple — an extension of the knife-function defined in Definition 4.3.5.

Definition 4.5.1. Given a cake C, an n-knife-tuple on C is a vector of n functions (K1, . . . , Kn), which is a
function from ∆n (the (n− 1)-dimensional unit-simplex in Rn) to the partitions of C, such that for every
nonempty subset of indexes I ⊆ {1, . . . , n}, if:

∑
i∈I

ti = 1 and ∀i /∈ I : ti = 0,

then the pieces whose indexes are in I form a partition of the cake and the other pieces are empty:
⊔

i∈I

Ki(t1, . . . , tn) = C and ∀i /∈ I : Ki(t1, . . . , tn) = ∅.

In particular, at endpoint #i of the simplex, piece #i comprises the entire cake. I.e, if ti = 1 and ti′ 6=i = 0,
then Ki = C and Ki 6=i = ∅.

Knife-tuples can be constructed from knife-functions.

Lemma 4.5.2. Let C be a cake and K a knife-function from ∅ to C. Define functions K1, K2:

K1(t1, t2) := K(t1)

K2(t1, t2) := C \ K(1− t2)

Then, (K1, K2) is a 2-knife-tuple on C.

Proof. We verify the knife-tuple property for all nonempty subset of indexes I ⊆ {1, 2}:

• I = {1, 2}: since we are on the unit simplex, t1 + t2 = 1, K1 = K(t1) and K2 = C \ K(t1) so indeed
K1 t K2 = C.
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• I = {1}: When t1 = 1 and t2 = 0, K1 = K(1) = C and K2 = C \ K(1) = ∅.

• I = {2}: When t2 = 1 and t1 = 0, K1 = K(0) = ∅ and K2 = C \ K(0) = C.

Longer knife-tuples can be constructed recursively, by replacing an element of an existing knife-tuple
with two elements separated by a knife-function. We exemplify this construction with a 3-knife-tuple.

Lemma 4.5.3. Let C be a cake and (K1, K2) a 2-knife-tuple on C. Suppose that, for every t1 and every t2 > 0, we
have a knife-function Kt1,t2 from ∅ to K2(t1, t2). Then, replacing the function K2 with two complementary functions
K′2 and K′3 gives a 3-knife-tuple (K′1, K′2, K′3):

K′1(t1, t2, t3) := K1(t1, t2 + t3)

K′2(t1, t2, t3) := Kt1,t2+t3

(
t2

t2 + t3

)
[t2 + t3 > 0]

∅ [t2 + t3 = 0]

K′3(t1, t2, t3) := K2(t1, t2 + t3) \ Kt1,t2+t3

(
t2

t2 + t3

)
[t2 + t3 > 0]

∅ [t2 + t3 = 0]

Proof. We verify that (K′1, K′2, K′3) satisfies the knife-tuple property for all nonempty subsets of indexes.
Recall that the knife-tuple property of the original (K1, K2) implies that: K1(1, 0) = K2(0, 1) = C and
K1(0, 1) = K2(1, 0) = ∅ and K1(t1, 1− t1) t K2(t1, 1− t1) = C.

• When t1 = 1 and t2 = t3 = 0, K′1 = K1(1, 0) = C and K′2 = K′3 = ∅ by definition.

• When t2 = 1 and t1 = t3 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1(1) = K2(0, 1) = C and K′3 =
K2(0, 1) \ K0,1(1) = ∅.

• When t3 = 1 and t1 = t2 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1(0) = ∅ and K′3 = K2(0, 1) \ K0,1(0) =
K2(0, 1) = C.

• When t1 + t2 = 1 and t3 = 0, K′1 = K1(t1, t2) and K′2 = Kt1,t2(1) = K2(t1, t2) so K′1 t K′2 = K1 t K2 = C,
and K′3 = 0.

• When t1 + t3 = 1 and t2 = 0, K′1 = K1(t1, t3) and K′3 = K2(t1, t3) \ Kt1,t3(0) = K2(t1, t3) so K′1 t K′3 =
K1 t K3 = C, and K′2 = 0.

• When t2 + t3 = 1 and t1 = 0, K′1 = K1(0, 1) = ∅ and K′2 = K0,1( t2
t2+t3

) and K′3 = K2(0, 1) \ K0,1( t2
t2+t3

),
so K′2 t K′3 = K2(0, 1) = C.

• When t1 + t2 + t3 = 1, K′2 t K′3 = K2(t1, t2 + t3), so K′1 t K′2 t K′3 = K1(t1, t2 + t3)t K2(t1, t2 + t3) = C.

So to build a 3-knife-tuple, we start with a single knife-function on C that cuts it to K1 t K2. Then, for
every point in time, we use another knife-function on K2 that cuts it to K′2 t K′3. Alternatively, we can use a
knife-function on K1 that cuts it to K′1 t K′3; the proof is entirely analogous.

An example of a 3-knife-tuple is shown in Figure 4.8. There, the first knife-function (K1 ≡ K′1) is a
growing pair-of-squares, identical to the knife-function in Figure 4.3/b. K2 is its complement (which is
also a pair-of-squares). For every point in time, the second knife-function (K′2) is a growing union-of-four-
squares. It starts at an empty set and grows until it covers all of K2. K′3 is the remainder, which is also a
union of four squares.

The previous lemma can be generalized to create knife-tuples of arbitrary length.

Lemma 4.5.4. Let C be a cake and (K1, . . . , Kn) an n-knife-tuple on C. Suppose that for some i ∈ {1, . . . , n}, for
every t1, . . . , tn where ti > 0, we have a knife-function Kt1,...,ti ,...,tn from ∅ to Ki(t1, . . . , ti, . . . , tn). Then, replacing
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the index i with two indexes i1 and i2 and replacing the function Ki with two complementary functions K′i1 and K′i2
gives an (n + 1)-knife-tuple (K′1, . . . , K′i1, K′i2, . . . , K′n):

K′i1(t1, . . . , ti1, ti2, . . . , tn) :=Kt1,...,ti1+ti2,...,tn

(
ti1

ti1 + ti2

)
[ti1 + ti2 > 0]

:=∅ [ti1 + ti2 = 0]
K′i2(t1, . . . , ti1, ti2, . . . , tn) :=Ki(t1, . . . , ti1 + ti2, . . . , tn)

\ Kt1,...,ti1+ti2,...,tn

(
ti1

ti1 + ti2

)
[ti1 + ti2 > 0]

:=∅ [ti1 + ti2 = 0]
∀j 6= i :K′j(t1, . . . , , ti1, ti2, . . . , tn) :=Kj(t1, . . . , ti1 + ti2, . . . , tn)

Proof. We verify that (K′1, . . . , K′i1, K′i2, . . . , K′n) satisfies the knife-tuple property for every nonempty subset
of indexes, I′. There are four cases, depending on whether I′ contains i1 or i2 or both.

• i1 /∈ I′ and i2 /∈ I′. Then, tj∈I′K′j = tj∈I′Kj = C by the knife-tuple property of (K1, . . . , Kn), and
K′i1 = K′i2 = ∅ by definition.

• i1 ∈ I′ and i2 /∈ I′. When ti2 = 0, ti1 + ti2 = ti1, so K′i1 = Kt1,...,ti1,...,tn(1) = Ki(t1, . . . , ti1, . . . , tn). Define
an alternative subset of indexes: I := I′ \ {i1} ∪ {i}. Then, tj∈I′K′j = tj∈IKj = C by the knife-tuple
property of (K1, . . . , Kn), and K′i2 = ∅ by definition.

• i2 ∈ I′ and i1 /∈ I′. When ti1 = 0, ti1 + ti2 = ti2, so K′i2 = Ki(t1, . . . , ti2, . . . , tn) \ Kt1,...,ti2,...,tn(0) =
Ki(t1, . . . , ti2, . . . , tn). Define an alternative subset of indexes: I := I′ \ {i2} ∪ {i}. Then, tj∈I′K′j =

tj∈IKj = C by the knife-tuple property of (K1, . . . , Kn), and K′i1 = ∅ by definition.

• i2 ∈ I′ and i1 ∈ I′. Note that when ti := ti1 + ti2, K′i1 t K′i2 = Ki. Define a subset of indexes
I := I′ \ {i1, i2} ∪ {i}. Then, tj∈I′K′j = tj∈IKj = C by the knife-tuple property of (K1, . . . , Kn).

Definition 4.3.6 on page 65 and Definition 4.3.8 on page 66 can be naturally generalized from a knife-
function to a knife-tuple:

Definition 4.5.5. The geometric-loss of a knife-tuple (K1, . . . , Kn) is the supremum geometric loss of the
resulting partitions:

Loss((K1, . . . , Kn), S) := sup
(t1,...,tn)∈∆n

( n

∑
j=1

Loss(Kj(t1, . . . , tn), S)
)

In Figure 4.8, K′1 can be covered by two squares and K′2 and K′3 can be covered by four squares each, so
the square-geometric-loss of this 3-knife-tuple is 10.

Definition 4.5.6. A knife-tuple (K1, . . . , Kn) is called S-good if for every i ∈ {1, . . . , n} and every absolutely-
continuous value-measure V, the function VS(Ki(t1, . . . , tn)) is a continuous function of t1, . . . , tn.

In the knife-tuple of Figure 4.8, the squares meet only at their corners, no square is created or destroyed
abruptly, so the knife-tuple is square-good. This can be proved formally as in Appendix 4.A.2; the details
are omitted for the sake of brevity.

Now we can generalize Lemma 4.4.1 from 2 to n agents:

Lemma 4.5.7. Let C be a cake and S a family of pieces. If there is an S-good n-knife-tuple on C with a geometric loss
of at most M, then:

PropEF(C, S, n) ≥ 1/M

Proof. Use the Simmons–Su procedure described in Subsection 4.5.1. The Preparation step (a) is exactly the
same. In the Evaluation step (b), for each vertex (t1, . . . , tn) of the triangulation, use the n-knife-tuple to
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t1 = 0.3, t2 = 0.1, t3 = 0.6

b

t1 = 0.3, t2 = 0.6, t3 = 0.1

b

t1 = 0.6, t2 = 0.1, t3 = 0.3

b

t1 = 0.6, t2 = 0.3, t3 = 0.1

b

Figure 4.8: Four partitions induced by the 3-knife-tuple (K′1, K′2, K′3) in different points (t1, t2, t3) of the
unit-simplex. K′1(·) is filled with horizontal blue lines, K′2(·) is filled with vertical green lines and K′3(·) is
blank.

create the partition: K1(t1, . . . , tn), . . . , Kn(t1, . . . , tn). Ask the owner of that vertex (e.g. agent i) to indicate
its favorite piece in this partition, namely:

arg max
j∈{1,...,n}

VS
i (Kj(t1, . . . , tn))

and label that vertex with the agent’s reply. By the properties of a knife-tuple, whenever tj = 0, Kj = ∅,
so VS

i (Kj) = 0, so the agent will never reply j. Therefore, the resulting labeling is a Sperner labeling, so a
fully-labeled sub-simplex exists.

By repeating steps (a) and (b) infinitely many times with finer and finer triangulations, we get a sub-
sequence of fully-labeled triangles that converges to a single point. Because the knife-tuple is S-good, all
agents’ S-value functions are continuous, so the limit point corresponds to an envy-free partition. The loss
of the knife-tuple is at most M, so the proportionality of the limit partition is at least 1/M. 5

We now apply Lemma 4.5.7 to prove our Theorem 4.2.

4.5.3 Squares and fat rectangles

Theorem 4.2(a). For every n ≥ 1:

PropEF(Square, Squares, n) ≥ 1
22dlog2ne >

1
4n2

Proof. For every n which is a power of 2, we construct an n-knife-tuple (K1, . . . , Kn), in which for every
(t1, . . . , tn) ∈ ∆n, and for every j ∈ {1, . . . , n} for which tj > 0, Kj(t1, . . . , tn) is a union of at most n squares.
Hence, the partition induced by (K1, . . . , Kn) has a geometric loss of n · n = n2.

The construction is recursive. The base is n = 2. Take the knife-function in Figure 4.3/b (a union of two
corner-squares growing towards the center). By Lemma 4.5.2, it defines a 2-knife-tuple which we denote
by: (K1, K2). For each t1 and t2, K1(t1, t2) and K2(t1, t2) are square-pairs (unions of two squares).

Consider next the case n = 4. In every square-pair in the above 2-knife-tuple, define a knife-function as
shown in Figure 4.8 — a union of four corner-squares growing from opposite corners towards the center. By
Lemma 4.5.4, we can replace K1 by K′1, K′2 and K2 by K′3, K′4. For each i ∈ {1, 2, 3, 4}, t1, t2, t3, t4, Ki(t1, t2, t3, t4)
is a union of four squares.

After l steps, we have a 2l-knife-tuple in which each component is a union of 2l squares. We split each
component using a knife-function made of a union of 2l+1 squares growing from opposite corners. This
gives a new, 2l+1-knife-tuple in which each component is a union of 2l+1 squares. After log2 n steps, we get
the desired n-knife-tuple.

This knife-tuple is square-good since no squares are created or destroyed abruptly; this is apparent in
the illustration, since the squares from opposite sides meet only at their corners. We suppress a formal
proof of this geometric fact.

When n is not a power of two, it can be rounded to the next power of two — 2dlog2ne. The geometric loss
is then at most 22dlog2ne, which is always less than 4n2.

5When n = 3, the three-knives procedure of Stromquist (1980) can be used instead of Simmons’ procedure. See the conference
version (Segal-Halevi et al., 2015a).
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For completeness we prove the following very simple theorem:

Theorem 4.2(b). If C is an R-fat rectangle and S the family of R-fat rectangles then:

PropEF(C, S, n) ≥ 1
22dlog2ne >

1
4n2

Proof. Scale the coordinate system such that C becomes a square. Use Theorem 4.2(a) and get a division
with square pieces. Scale the coordinate system back. Now the pieces are R-fat rectangles.

We do not know if the 1/(4n2) lower bound is asymptotically tight. The upper bound from Claim 3.3.4
on page 18 is Prop(Square, squares, n) ≤ 1/(2n). Moreover, the procedure of Subsection 3.5.1 on page 27
proves that Prop(Square, squares, n) ≥ 1/(4n− 4), but ignores envy considerations. We do not know if it
is possible to attain an envy-free division with a proportionality of 1/O(n).

In the following subsection we show that it is possible to attain an envy-free and proportional division
for every n, in return to a compromise on the family of usable pieces.

4.5.4 Arbitrary fat objects

Theorem 4.2(c). Let C be a d-dimensional R-fat cake and n ≥ 2 an integer. Let S be the family of mR-fat
pieces, where m be the smallest integer such that n ≤ md (i.e. m = dn1/de). Then:

PropEF(C, S, n) = 1/n

Proof. The proof is illustrated in Figure 4.9 for the case of d = 2 dimensions. Let C be an R-fat d-dimensional
cake. By definition of fatness it contains a cube B− of side-length x and it is contained in a parallel cube B+

of side-length R · x, for some x > 0.
Partition the cube B− to a grid of md sub-cubes, B1, ..., Bmd , each of side-length x

m . For every i, denote by
B−i the union of all md − 1 squares different than Bi, i.e:

B−i :=
⋃

j 6=i

Bj = B− \ Bi

Denote by B− the cake outside the enclosed cube, i.e:

B− := C \ B−

Define the following knife function K on C (see Figure 4.9):

• For t ∈ [0, 1
3 ]: K(t) = (B1)

3t, i.e., the cube B1 dilated by a factor of 3t. Hence K(0) = ∅ and K( 1
3 ) = B1.

• For t ∈ [ 1
3 , 2

3 ]: K(t) is any knife function from B1 to C \ B−1 with continuous Lebesgue measure. See
Subsection 4.A.1 for a proof that such a function exists.

• For t ∈ [ 2
3 , 1]: K(t) is C \ [(B−1)

3(1−t)], i.e., the cake not yet covered by the knife is B−1 dilated by a
factor proportional to the remaining time. Hence K(1) = C.

By Lemma 4.5.2, K induces a 2-knife-tuple (K1, K2) where K1 := K and K2 := C \ K1. For every t1, t2 with
t1 + t2 = 1, K1(t1, t2) is mR-fat:

• When t1 ∈ [0, 1
3 ], K1 it is a cube, which is 1-fat.

• When t1 ∈ [ 1
3 , 1], K1 contains the cube B1, whose side-length is x/m, and is contained in the cube B+,

whose side-length is x · R.

and K2(t1, t2) is also mR-fat:

• When t1 ∈ [0, 2
3 ], K2 contains e.g. the cube Bn, whose side-length is x/m, and is contained in the

larger cube B+, whose side-length is x · R.
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t2 = 2
3
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Figure 4.9: Dividing a general R-fat cake to n = 3 people. K1 is filled with horizontal lines, K2 is filled with
vertical lines and K3 is white. Note that each of these three pieces is 2R-fat, where R is the fatness of the
original cake.
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Length = 1

Length = R

V = n− 1 + ǫ V = 1− ǫ

Figure 4.10: A fat cake in which every proportional division must use slim pieces. See Lemma 4.5.8.

• When t1 ∈ [ 2
3 , 1], K2 contains a dilated Bn and it is contained in a dilated B−; since they are dilated by

the same factor, the ratio between their side-lengths is always m.

For every t1, t2 with t1 + t2 = 1, we now define a knife-function Kt1,t2 from ∅ to K2(t1, t2). Kt1,t2 is analogous
to K but uses the sub-cube B2. This is possible because:

• When t1 ∈ [0, 2
3 ], K2 contains the cube B2 itself;

• When t1 ∈ ( 2
3 , 1], K2 contains a dilated B2, which is contained in a dilated B+.

The function Kt1,t2 is defined as follows:

• For t ∈ [0, 1
3 ]: Kt1,t2(t) = (B2)3t.

• For t ∈ [ 1
3 , 2

3 ]: Kt1,t2(t) is any knife-function from B2 to K2 \ B−2 with continuous Lebesgue measure.

• For t ∈ [ 2
3 , 1]: Kt1,t2(t) is K2 \ [(B−2)3(1−t)].

By Lemma 4.5.3, this induces a 3-knife-tuple (K′1, K′2, K′3).
To define an n-knife-tuple, proceed in a similar way for the pieces B1, . . . , Bn. All components in the

knife-tuple are mR-fat, and their Lebesgue measure changes continuously. Therefore, by the proofs in
Subsection 4.A.1, the knife-tuple is S-good, as required by Lemma 4.5.7.

Figure 4.9 shows an example of the construction for d = 2 dimensions and n = 3 agents. Here m =
d
√

3e = 2 so each agent receives an envy-free 2R-fat land-plot with a utility of at least 1/3.
Theorem 4.2(c) implies that we can guarantee proportionality by compromising on the fatness of the

pieces — allowing the pieces to be thinner than the cake by a factor of dn1/de. This factor is asymptotically
optimal even when envy is allowed:

Lemma 4.5.8. For every R ≥ 1, there is an (R + 1)-fat cake C for which, for every m′ ≤ (n− 1)1/d:

PropEF(C, m′R f at objects, n) ≤ Prop(C, m′R f at objects, n) < 1/n

Proof. Let δ, ε be small positive constants. Let C be a cake with the following two components:

• The left component is a cube with all sides of length 1;

• The right component is a box with one side of length R and the other sides of length δ.

See Figure 4.10 for an illustration for d = 2. C is contained in a cube of side-length R + 1 and it contains a
cube of side-length 1, so it is (R + 1)-fat.

C represents a desert with the following water sources:

• The left cube contains n− 1 + ε water units;
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• A small disc at the end of the right box contains 1− ε water units.

C has to be divided among n agents whose value functions are proportional to the amount of water. To get
a proportional division, each agent must receive exactly 1 unit of water. This means that at least one piece,
e.g. Xi, must overlap both the right pool and the left pool.

The smallest cube containing Xi has a side-length of at least R. For the largest cube contained in Xi,
there are two options:

• If the largest contained cube is in the left side, then its side-length must be at most
(

1
n−1+ε

)1/d

, since

it must contain at most 1 unit of water.

• If the largest contained cube is in the right side, then its side-length must be at most δ.

If δ is sufficiently small (in particular, δ <

(
1

n−1

)1/d

), then the piece Xi is not m′R-fat for every m′ ≤
(n− 1)1/d. This means that, if all pieces must be m′R-fat, a proportional division is impossible.

4.6 Conclusions and Future Work

This chapter presented the problem of dividing a cake to agents whose utility functions depend on geomet-
ric shape, where the division should be both partially-proportional and envy-free. The main contributions
in this chapter are several generic division procedures for envy-free division. For two agents, these pro-
cedures have the best possible partial-proportionality guarantees in various geometric scenarios. For n
agents, the procedures guarantee a positive partial proportionality.

The tools developed in this chapter are generic and can work for cakes and pieces of other geometric
shapes. In fact, our tools reduce the envy-free division problem to a geometric problem — the problem of
finding appropriate knife functions.

Some topics not covered in the present chapter are:

• Utility functions that takes into account both the value contained in the best usable piece and the total
value of the piece, e.g.: U(X) = w ·VS(X) + (1− w) ·V(X), where w is some constant.

• Absolute size constraints on the usable pieces instead of the relative fatness constraints studied here,
e.g. let S be the family of all rectangles with length and width of at least 10 meters.

• Personal geometric preferences — letting each agent i specify a different family Si of usable pieces.
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Chapter 4 Appendix
4.A Geometric conditions for S-good knife functions

Recall Definition 4.3.6:

Given a cake C and a family S, a knife function KC is called S-good if for every absolutely-
continuous value-measure V, both VS(KC(t)) and VS(KC(t)) are continuous functions of t.

This section presents two different geometric properties of a knife function KC, each of which guarantees
that it is S-good.

4.A.1 S-smoothness

The first property is simple: both the region covered and the region not covered by the knife function
should always return S-pieces whose Lebesgue measure changes continuously.

Definition 4.A.1. Let S be a family of pieces. A knife function K(t) is called S-smooth if:
(a) The Lebesgue measure of K(t) (and hence of K(t)) is a continuous function of t, and:
(b) for all t, both K(t) ∈ S and K(t) ∈ S.

Lemma 4.A.2. If V is a measure absolutely-continuous with respect to Lebesgue measure, and K is an S-smooth
knife-function, then the real functions VS ◦ K and VS ◦ K are continuous.

Proof. The measure V is absolutely continuous with respect to Lebesgue measure, and Lebesgue(K(t)) is a
continuous function of t by condition (a). Hence, V(K(t)) is also a continuous function of t. Condition (b),
namely K(t) ∈ S, implies that ∀t ∈ [0, 1] : VS(K(t)) = V(K(t)), so VS(K(t)) is also a continuous function
of t. An analogous proof applies to VS(K(t)).

The knife function in Figure 4.3/a is Rectangle-smooth but not Square-smooth. The other knife func-
tions in that figure are neither Rectangle-smooth nor Square-smooth (e.g in Figure 4.3/c, K(t) is not a
rectangle).

We now prove a useful lemma that will help us find S-smooth functions. Recall that S-smoothness has
two conditions: Lebesgue(K(t)) should be continuous, and K(t) should be in S. We now focus on the first
condition — continuity of Lebesgue(K(t)).

Given two bounded Borel subsets of Rd, A and B, does there always exist a knife function K from A to
B such that Lebesgue(K(t)) is continuous? By the monotonicity of a knife-function, a necessary condition
is that A ⊂ B. By the following lemma, this condition is also sufficient.

Lemma 4.A.3. Let A and B be two bounded Borel subsets of Rd with A ⊆ B. There exists a knife function K from
A to B, such that Lebesgue(K(t)) is a continuous function of t.

Proof (based on Fish (2014)). Pick a point O ∈ B. For every r ≥ 0 let D(r) be the open d-ball of radius
r around O. Since B is bounded, there is a certain radius rmax such that B ⊆ D(rmax). For every t ∈
[0, 1], define D∗(t) = D(t · rmax), so D∗(t) is an open ball whose radius grows continuously from 0 to
rmax. Define: K(t) := [A ∪ D∗(t)] ∩ B. Clearly, K(0) = A, K(1) = B and K is (weakly) monotonically
increasing. Hence, K is a knife-function from A to B. The continuity of Lebesgue(K(t)) follows from
the fact that Lebesgue(D∗(t)) is continuous and for every ∆t: Lebesgue(K(t + ∆t)) − Lebesgue(K(∆t)) ≤
Lebesgue(D∗(t + ∆t))− Lebesgue(D∗(∆t)).

We call any function satisfying the requirements of Lemma 4.A.3 a knife-function with continuous Lebesgue-
measure. Any S-smooth knife-function has continuous Lebesgue-measure. Any knife-function with contin-
uous Lebesgue-measure in which K(t) ∈ S and K(t) ∈ S is S-smooth.
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4.A.2 S-continuity

The second property is more involved. The knife function may return pieces that are not from S. However,
it must change in a way that S-pieces are not created or destroyed abruptly, but rather grow or shrink in a
continuous manner.

Definition 4.A.4. A piece s is called a ε-predecessor of a piece s′ if s ⊆ s′ and Lebesgue(s′ \ s) < ε.

Definition 4.A.5. Let S be a family of pieces. A knife function K(t) is called S-continuous if for every ε > 0
there exists δ > 0 such that, for all t and t′ having |t′ − t| < δ:

(a) Every S-piece st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t).
(b) Every S-piece st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t).

Lemma 4.A.6. If V is a measure absolutely-continuous with respect to Lebesgue measure, and K is an S-continuous
knife function, then the real functions VS ◦ K and VS ◦ K are uniformly-continuous.

Proof. Given ε′ > 0, we show the existence of δ > 0 such that, for every t, t′, if |t′− t| < δ then |VS(K(t′))−
VS(K(t))| < ε′.

Given ε′, by the continuity of V, there is an ε > 0 such that:

Lebesgue(s) < ε =⇒ V(s) < ε′ (4.2)

Given that ε, by the S-continuity of K there is a δ > 0 such that, if |t′ − t| < δ, then every S-piece
st′ ⊆ K(t′) has an ε-predecessor S-piece st ⊆ K(t). This means that st ⊆ st′ and:

Lebesgue(st′ \ st) < ε

which by (4.2) implies

V(st′ \ st) < ε′

which by additivity of V implies

V(st) > V(st′)− ε′

The latter inequality is true for every S-piece st′ ⊆ K(t′), so it is also true for the supremum:

sup
st∈S,st⊆K(t)

V(st) ≥ V(st) > sup
st′∈S,st′⊆K(t′)

V(st′)− ε′

By definition, the S-value is the supremum, so:

VS(K(t)) > VS(K(t′))− ε′

By symmetric arguments (replacing the roles of t and t′), VS(K(t′)) > VS(K(t))− ε′. Hence |VS(K(t′))−
VS(K(t))| < ε′ as we wanted to prove.

An analogous proof applies to the function VS ◦ K.

The following lemma demonstrates how the existence of S-continuous functions can be proved.

Lemma 4.A.7. Let S be the family of d-dimensional cubes. For every bounded cake C in Rd, there exists an S-
continuous knife-function from ∅ to C.

Proof. Since C is bounded, it can be moved and scaled such that it is contained in the unit cube [0, 1]d.
For every t ∈ [0, 1], Let H(t) be the half-space defined by: x < t. Define: KC(t) := H(t) ∩ C. Clearly,
KC(0) = ∅, KC(1) = C and KC is (weakly) monotonically increasing. Hence, KC is a knife-function from ∅
to C.

The proof that KC is S-continuous is based on the following geometric fact: for every cube st′ contained
in the half-space H(t + δ), there exists a cube st ⊆ st′ contained in the half-space H(t), such that the
side-length of st is smaller than that of st′ by at most δ (it is smaller by exactly δ when st′ is adjacent to the
rightmost side of H(t+ δ) and parallel to the axes; see Figure 4.11 for an illustration of the two-dimensional
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t t + δ

Figure 4.11: Square-continuity of the knife-function defined in Lemma 4.A.7.
The solid line describes the knife location at time t; the dotted line describes its location at time t + δ.
The dotted squares are squares contained in H(t + δ); the solid squares are their predecessors in H(t).
At the bottom, the side-length of the solid square is smaller than the dotted square by exactly δ.
At the top, the side-length of the solid square is smaller than the dotted square by less than δ.

(c),(d) K3(t)

Figure 4.12: A knife-function that is not S-continuous.

case). Suppose st′ is also contained in C. Since C is contained in the unit cube, the side-length of st′ is at
most 1. Therefore, the area of st is smaller than that of st′ by at most 1− (1− δ)d ≤ d · δ.

Consider now the definition of S-continuity. For every ε > 0, take δ := ε/d, let t′ = t + δ and let st′ be
an S-piece contained in KC(t′). By definition of KC, st′ is contained in both C and H(t′). By the geometric
fact, st′ has an ε-predecessor st that is contained in H(t). Since st ⊆ st′ , it is also contained in C. Hence, it is
contained in KC(t).

Using similar arguments, it is possible to prove that the function KC described above is S-continuous
also when S is the family of boxes or fat boxes. Full characterization of the the families S for which KC is
S-continuous is an interesting question that is beyond the scope of the present paper.

4.A.3 Examples

The knife-function in Figure 4.3/a, KC(t) = [0, L]× [0, t], is a special case of the ’sweeping plane’ function
of Lemma 4.A.7. Hence it is square-continuous (and also rectangle-continuous).

As a negative example, consider the knife function KC(t) = [0, t] × [0, 1] ∪ [1 − t, 1] × [0, 1] defined
on the cake C = [0, 1]× [0, 1]. This function describes two rectangles that approach each other from two
opposite sides of the cake (see Figure 4.12). It is not square-continuous. Intuitively, a square of side-length
1 is created at time t = 0.5, when the two components of KC(t) meet. Formally, let ε = 0.75. For every
δ > 0, select t = 0.5− δ

3 and t′ = 0.5 + δ
3 . Then KC(t′) contains the square s′ = [0, 1]× [0, 1], but all squares

s ⊆ KC(t) have a side-length of less than 0.5, hence Lebesgue(s′ \ s) > 0.75 = ε.
The knife-functions in Figure 4.3/b,c,d,e are S-continuous but not S-smooth. Thus one may think that

S-continuity is more permissive than S-smoothness. But this is not the case: S-continuity and S-smoothness
are two independent properties. To see this, let S′ be the family of rectangle-pairs (defined as unions of two
rectangles). The function KC defined in the previous paragraph (and Figure 4.12) is S′-smooth, because
both KC(t) and KC(t) are rectangle-pairs. However, KC is not S′-continuous because some rectangle-pairs
(e.g. [0, 1]× [0, 0.2] ∪ [0, 1]× [0.8, 1]) are created abruptly at time t = 0.5.
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θ

Figure 4.13: Dividing a convex R-fat cake to two people.
The cake (the ellipse) is divided by a rotating knife (dotted line) to two 2R-fat convex pieces. This is a
convex variant of Figure 4.6.

4.A.4 Conclusion

We proved two independent sufficient conditions for S-goodness. Combining Lemmas 4.A.2 and 4.A.6
gives:

Corollary 4.A.8. If a knife-function is either S-smooth or S-continuous (or both), then it is S-good.

Each of the two conditions, S-smoothness and S-continuity, is sufficient but not necessary for S-goodness.

4.B Dividing a convex fat cake to convex fat pieces

The following theorem is a variant of Theorem 4.1(c) in Subsection 4.4.4, in which the cake must be convex
and the pieces are guaranteed to be convex.

The convexity requirement, while seemingly simple, implies that we cannot use the usual knife func-
tions anymore. For example, if C is a circle then every knife function (which must be a straight line to keep
the pieces convex) must start with an infinitely slim piece. Hence we must use another technique which
can be called a rotating-knife.

Theorem. For every R ≥ 1, If C is an R-fat 2-dimensional convex figure and S is the family of convex 2R-fat pieces
then:

PropEF(C, S, 2) = 1/2

Proof. Scale, rotate and translate the cake C such that the largest square contained in C is B− = [−1, 1]×
[−1, 1]. By definition of fatness, C is now contained in a square B+ of side-length at most 2R.

Consider a line passing through the origin at angle θ ∈ [0◦, 360◦] from the x axis (see Figure 4.13). This
line cuts the contained square B− into two quadrangles, each of which contains a square with side-length
1. Because C is convex, this line also cuts the boundary of C at exactly two points, splitting C to two convex
pieces. Each of these two pieces is 2R-fat since it contains a square with side-length 1 and it is contained in
B+ whose side-length is 2R.

Let W(θ) be the value of the piece for agent #1 at the left-hand side of the line when facing at angle
θ. Because the value measure is continuous, W is continuous. When θ rotates by 180◦, the piece that was
at the left-hand side is now at the right-hand side and vice versa (e.g. when θ = 0◦ the left-hand side
is above the line and when θ = 180◦ the right-hand side is above the line). Hence if W(θ) > 1/2 then
W(180◦ + θ) = 1−W(θ) < 1/2 and vice versa. Hence by the continuity of W there must be a θ for which
W(θ) = 1/2. Cut the cake at the line in angle θ. Let agent #2 choose a piece and give the other piece to
agent #1. Now both agents have a piece which is convex and 2R-fat and their value is at least 1/2.

So far we have not managed to generalize the rotating-knife technique to more than two agents.

Remark 4.B.1. The rotating-knife technique was introduced by Robertson and Webb (1998) as an algorithm
to produce an envy-free cake-allocation among three agents. The algorithm works only when the cake has
two or more dimensions, and it does not provide geometric shape guarantees.

Rotating knives are also used by Barbanel and Brams (2011) for finding an approximate envy-free,
equitable and Pareto-optimal division of a pie (a one-dimensional circle) between two players.
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5.1 Introduction

The classic cake-cutting setting assumes a one-shot division: the resource is divided once and for all, like
a cake that is divided and eaten soon after it comes out of the oven. But in practice, it is often required to
re-divide an already-divided resource. One example is a cloud-computing environment, where new agents
come and require resources held by other agents. A second example is fair allocation of radio spectrum
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among several broadcasting agencies: it may be required to re-divide the frequencies to accommodate new
broadcasters. A third example is land-reform: large land-estates are held by a small number of landlords,
and the government may want to re-divide them to landless citizens. A fourth example arises when new
shares of a company are issued, and one desires that the old share-holders not feel unduly hurt by the
dilution of their shares.1

In the classic one-shot division setting, there are n agents with equal rights. The goal is to give each
agent a fair share of the cake. Ideally we would like to give each agent a piece worth at least 1/n of the
total cake value — a requirement called “proportionality” (see Chapter 2 on page 6). If this is not possible,
we would like to give each agent at least a fraction r/n of the total cake value, where r ∈ (0, 1) is constant
independent of n. We call this requirement r-proportionality.

In contrast, in the re-division setting, there is an existing division of the cake among the n agents. This
division is not necessarily fair; in particular, there may be some agents whose allocation is empty. If the
cake is re-divided, it may be required to give extra rights to the existing landlords. In particular, it may
be required to give each landlord the opportunity to keep a substantial fraction of its current value. This
may be due either to efficiency reasons (in the cloud computing scenario) or economic reasons (in the radio
spectrum scenario) or political reasons (in the land-reform scenario). We call this requirement ownership.
Given a constant w ∈ (0, 1), w-ownership means that each agent receives at least w times its old value. The
main question in this chapter is:

Can positive levels of proportionality and ownership be attained simultaneously?

5.1.1 Results

Our first result answers this question positively.

Theorem 5.1. For every constants r, w ∈ [0, 1] where r + w ≤ 1, and for every existing division of the cake, there
exists a division that simultaneously satisfies r-proportionality and w-ownership. Moreover, when r, w are constant
rational numbers, such a division can be found in time O(n2).

The parameters r, w represent the level of balance between two principles: large r means more emphasis
on fairness while large w means more emphasis on ownership rights. As an example, taking r = w = 1/2,
Theorem 5.1 implies that it is possible to re-divide the cake, giving each agent at least half its previous
value, while simultaneously giving each agent at least 1/(2n) of the total cake value.

The balance parameters can also be given probabilistic interpretation. Suppose the government wants
to do a land reform and needs the agreement of the current landowners. Naturally, the current landowners
do not want to give away their lands. However, they may fear that, without land-reform, the landless
citizens might revolt and they might lose all their lands. If the landowners believe that the probability of a
successful revolt is 1−w, then they will agree to a land-reform that guarantees w-ownership. Theorem 5.1
implies that, in this case, it is possible to carry out a land-reform that guarantees (1− w)-proportionality.

The following proposition shows that the balance given by Theorem 5.1 is tight:

Proposition 5.1. For every constants r, w ∈ [0, 1] where r + w > 1, it may be impossible to simultaneously
guarantee r-proportionality and w-ownership.

Geometric constraints

While Theorem 5.1 is encouraging, it ignores an important aspect of practical division problems: geome-
try. The division it guarantees may be highly fractional, giving each agent a large number of disconnected
pieces. But in land division (as well as many other practical division problems), the agents may want to
receive a single connected piece. Can partial-proportionality and partial-ownership be attained simultane-
ously with a connectivity constraint? The following proposition answers this question negatively.

Proposition 5.2. When the cake is a 1-dimensional interval and each piece must be an interval, for every positive
constants r, w ∈ (0, 1), it may be impossible to simultaneously satisfy r-proportionality and w-ownership. Moreover,
for every r > 0 and every integer k ∈ {1, . . . , n}, there might be k agents who, in any r-proportional division, receive
at most a fraction 1/b n

k c of their old value.

1I am grateful to a referee for this example.
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Figure 5.1: With geometric constraints, a Pareto-efficient division might paradoxically have to discard
some of the cake.

The latter part of the proposition involves a property much weaker than proportionality: all we want
is to guarantee each agent a positive value. With the connectivity constraint, even this weak “positivity”
requirement is incompatible with w-ownership for every constant w > 0: a positive division might require
us to give one agent at most 1/n of its previous value, give two agents at most 2/n of their previous value,
give n/3 agents at most 1/3 of their previous value, etc.

Proposition 5.2 motivates the following weaker ownership requirement: for every k, at least n− k agents
receive at least a fraction 1/b n

k c of their old value. For example (taking k = n/3 and assuming all quotients
are integers), at least 2n/3 agents should receive at least 1/3 of their old value. This criterion is inspired by
the "90th percentile" criterion common in Service-Level-Agreements and Quality-of-Service analysis, e.g.
Zhang et al. (2014); Delimitrou and Kozyrakis (2014). It can also be justified by political reasoning: in a
democratic country, it may be sufficient to win the support of a sufficiently large majority.

Our following results almost match this relaxed ownership criterion. Formally, the democratic owner-
ship property means that, for every integer k ∈ {1, . . . , n}, at least n− k agents receive at least a fraction
1/d n

k e of their previous value. Democratic-ownership is almost the same as the upper bound implied by
Proposition 5.2; the only difference is that in the upper bound the fraction is rounded downwards (1/b n

k c)
while in democratic-ownership the fraction is rounded upwards.

Theorem 5.2. When the cake is a 1-dimensional interval and each piece must be an interval, it is possible to find in
time O(n2 log n) a division simultaneously satisfying democratic-ownership and 1/3-proportionality.

It is an open question whether democratic-ownership is compatible with r-proportionality for some
r > 1/3.

Theorem 5.2, like most cake-cutting papers, assumes that the cake is 1-dimensional. In realistic division
scenarios, the cake is often 2-dimensional and the pieces should have a pre-specified geometric shape, such
as a rectangle or a convex polygon. Rectangularity and convexity requirements are sensible when dividing
land, exhibition space in museums, advertisement space in newspapers and even virtual space in web-
pages. Moreover, in the frequency-range allocation problem, it is possible to allocate frequency ranges for
a limited time-period; the frequency-time space is two-dimensional and it makes sense to require that the
"pieces" are rectangles in this space (Iyer and Huhns, 2009).

2-dimensional cake-cutting introduces new challenges over the traditional 1 dimensional setting. As
an example, in one dimension, it can be assumed that the initial allocation is a partition of the entire cake;
this is without loss of generality, since any "blank" (unallocated part) can just be attached to a neighboring
allocated interval without harming its shape or value. However, in two dimensions, the initial allocation
might contain blanks that cannot be attached to any allocated piece due to the rectangularity or convexity
constraints. For example, suppose the cake is as the rectangle in Figure 5.1. There are 4 agents and each
agent i has positive value-density only inside the rectangle Zi. The most reasonable division (e.g. the only
Pareto-efficient division) is to give each Zi entirely to agent i. But, this allocation leaves a blank in the center
of the cake, and this blank cannot be attached to any allocated piece due to the rectangularity constraint.

This counter-intuitive scenario cannot happen in a one-dimensional cake. Handling such cases requires
new geometry-based tools. Using such tools we can prove analogues of Theorem 5.2 to two common 2-
dimensional settings.

Theorem 5.3. When the cake is a rectangle and each piece must be a parallel rectangle, it is possible to find in time
O(n2 log n) a division simultaneously satisfying democratic-ownership and 1/4-proportionality.
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Figure 5.2: A rectilinear polygon with 4 reflex vertexes (circled).

Cake Pieces Value guarantee Ownership
Arbitrary Arbitrary r/n for any r ∈ [0, 1] 1− r
Interval Intervals 1/(3n) Democratic

Rectangle Rectangles 1/(4n) Democratic
Convex 2-d Convex 2-d 1/(5n) Democratic

Rectilinear with T ref.vert. Rectangles 1/(4n + T) Democratic

Table 5.1: Summary of results for cake redivision: ownership and proportionality guarantees.

Theorem 5.4. When the cake is a 2-dimensional convex polygon and each piece must be convex, it is possible to find
in time O(n2 log n) a division simultaneously satisfying democratic-ownership and 1/5-proportionality.

Remark. In the interval, rectangle and convex settings, the geometric constraints are mostly harmless with-
out the ownership requirement: when the cake is an interval or a rectangle or a convex object, classic algo-
rithms for proportional cake-cutting, such as Even–Paz (Even and Paz, 1984), can be easily made to return
interval/rectangle/convex pieces by ensuring that the cuts are parallel. Similarly, the ownership require-
ment is easy to satisfy without the geometric constraints, as shown by Theorem 5.1. It is the combination
of these two requirements that leads to interesting challenges.

Our next result generalizes Theorem 5.3 to a cake that is a rectilinear polygon — a polygon all whose
angles are 90◦ or 270◦. Rectilinearity is a common assumption in polygon partition problems (Keil, 2000).
The "complexity" of a rectilinear polygon is characterized by the number of its reflex vertexes — vertexes
with a 270◦ angle. We denote the cake complexity by T. A rectangle — the simplest rectilinear polygon —
has T = 0. The cake in Figure 5.2 has T = 4 reflex vertexes.

Theorem 5.5. When the cake is a rectilinear polygon with T reflex vertexes, and each piece must be a rectangle, it
is possible to find in time O(n2 log n + poly(T)) a division satisfying democratic-ownership, in which each agent
receives at least 1/(4n + T) of the total cake value.2

Price-of-fairness

Redivision protocols can be used not only to compromise between old and new agents, but also to com-
promise between fairness and efficiency. Often, the most economically-efficient allocation is not fair, while
a fair allocation is not economically-efficient. The trade-off between fairness and efficiency is quantified
by the price-of-fairness (Bertsimas et al., 2011, 2012; Caragiannis et al., 2012; Aumann and Dombb, 2010).
It is defined as the worst-case ratio of the maximum attainable social-welfare to the maximum attainable
social-welfare of a fair allocation. The social welfare is usually defined as the arithmetic mean of the agents’
values (also called utilitarian welfare) or their geometric mean (also called Nash welfare, see Moulin (2004)
and Caragiannis et al. (2016)).

2The guarantee of 1/(4n + T) is calculated as a fraction of the total cake value. However, with a rectilinear cake and a rect-
angular piece, even a single agent cannot always get the entire cake value to itself. Therefore, one could think of an alternative
guarantee where the benchmark for each agent is the largest value that this agent can attain in a rectangle. For example, we could
guarantee each agent a fraction 1/(4n) of the value of its most valuable rectangle. However, such guarantee might be much worse
than the guarantee of Theorem 5.5. The proof in Appendix 5.A implies that the value of the most valuable rectangle might be as
small as 1/(T + 1) of the total cake value. Therefore, the alternative guarantee of 1/(4n) this value translates to a guarantee of
1/(O(n · T)) — much worse than the 1/(O(n + T)) guaranteed by Theorem 5.5.
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Cake Pieces Value guarantee Utilitarian price Nash price
Arbitrary Arbitrary r/n for any r ∈ [0, 1] 1/(1− r) 1
Interval Intervals 1/(3n) O(

√
n) 8.4

Rectangle Rectangles 1/(4n) O(
√

n) 11.2
Convex 2-d Convex 2-d 1/(5n) O(

√
n) 14

Table 5.2: Summary of price-of-fairness upper bounds, Note that the price is a ratio. This means that a
price of 1 means “no price”. Indeed, the Nash price of proportionality is 1, since the Nash-optimal division
is always envy-free, hence also proportional.

A redivision protocol can be used to calculate an upper bound on the price of fairness in the following
way. Take a welfare-maximizing allocation as the initial allocation; use a redivision protocol to produce a
partially-proportional allocation in which the utility of each agent is close to its initial utility; conclude that
the new welfare is close to the initial (maximal) welfare.

Without geometric constraints, we have the following upper bound:

Theorem 5.6. For every constant r ∈ [0, 1], the utilitarian-price of r-proportionality is at most 1/(1− r).

Note that when r = 1, the bound is infinity. Indeed, Caragiannis et al. (2012) proved that the price of
1-proportionality in this setting is Θ(

√
n), which is not bounded by any constant. Our results show that

by making a small compromise on the level of proportionality we can get a constant (independent of n)
bound on the utilitarian-price. The parameter r sets the level of trade-off between fairness and efficiency.

With geometric constraints, we have the following upper bounds:

Theorem 5.7. When the cake is an interval and each piece must be an interval, for every B ≥ 3:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 8.4.

Theorem 5.8. When the cake is a rectangle and each piece must be a rectangle, for every B ≥ 4:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 11.2.

Theorem 5.9. When the cake is convex polygon and each piece must be convex, ∀B ≥ 5:

• The utilitarian-price of (1/B)-proportionality is O(
√

n);

• The Nash-price of (1/B)-proportionality is at most 14.

Note that the first claim in Theorem 5.7 is subsumed by Aumann and Dombb (2010), who prove that the
utilitarian-price of 1-proportionality in this setting is Θ(

√
n). We bring this claim only for completeness.

The second claim in this theorem, as well as the following theorems which deal with two-dimensional
constraints, are not implied by previous results.

5.1.2 Related Work

Dynamic fair division

Our cake redivision problem differs from several division problems studied recently.

1. Dynamic resource allocation (Kash et al., 2013; Friedman et al., 2015) is a common problem in cloud-
computing environments. The server has several resources, such as memory and disk-space. Agents (pro-
cesses) come and depart. The server has to allocate the resources fairly among agents. When new agents
come, the server may have to take some resources from existing agents. The goal is to do the re-allocation
with minimal disruption to existing agents (Friedman et al., 2015). A different but related problem is the
food-bank problem, where a charity organization receives food donations and must decide on-line to whom
each donation should be allocated (Aleksandrov et al., 2015). In these problems, the resources are homo-
geneous, which means that the only thing that matters is what quantity of each resource is given to each
agent. In contrast, our cake is heterogeneous and different agents may have different valuations on it, so our
protocol must decide which parts of the cake should be given to which agent.
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2. Population monotonicity (Thomson, 1983; Moulin, 1990a, 2004; Thomson, 2011) is an axiom that de-
scribes a desired property of allocation rules. When new agents arrive and the same division rule is re-
activated, the value of all old agents should be weakly smaller than before. This axiom represents the
virtue of solidarity: if sacrifices have to be made to support an additional agent, then everybody should
contribute (Thomson, 1983). We, too, assume that old agents are taking part in supporting the new agents.
However, we add the ownership requirement, which means that old agents should be allowed to keep at
least some of their previous value. In addition, while their approach is axiomatic and mainly interested in
existence results, our approach is constructive and our goal is to provide an actual re-division protocol.

Recently, we have started to study monotonicity axioms, such as population-monotonicity and resource-
monotonicity, in the context of cake-cutting; see Sziklai and Segal-Halevi (2015).

3. Private endowment in economics resource allocation problems means that each agent is endowed with
an initial bundle of resources. Then, agents exchange resources using a market mechanism. The classic
problem in economics involves homogeneous resources, but it has also been studied in the cake-cutting
framework (Berliant and Dunz, 2004; Aziz and Ye, 2014). A basic requirement in these works is individual
rationality, which means that the final value allocated to each agent must be weakly larger than the value of
the initial endowment (note the contrast with the population monotonicity axiom). In our problem we do
not make this assumption as it is incompatible with fairness: since some agents may initially own no land,
individual rationality would mean that they might not receive anything in the exchange.

4. Online cake-cutting (Walsh, 2011) is characteristic of a birthday party in an office, in which some
agents come or leave early while others come or leave late. It is required to give some cake to agents who
come early while keeping a fair share to those who come late. In contrast to our model, there it is impossible
to re-divide allocated pieces, since they are eaten by their receivers. The fairness guarantees are inevitably
weaker.

5. Land reform is the re-division of land among citizens. It has been attempted in numerous countries
around the globe and in many periods throughout history. Some books on land reform are Powelson
(1988); Bernstein (2002); Rosset et al. (2006); Lipton (2009). The earliest recorded land-reform was done in
ancient Egypt in the times of King Bakenranef, 8th century BC. The most recent land-reform act has been
legislated in Scotland in 2016 AD. The balance between fairness and ownership rights is a major concern
in such reforms (Sellar, 2006; Hoffman, 2013; Wightman, 2015; MacInnes and Shields, 2015).

6. The cake-cutting procedures of Fink and Austin (Brams and Taylor, 1996, pages 40-44) handle a
situation in which all agents — old and new alike — are entitled to a proportional share; however, the
agents come sequentially. Initially two agents come and divide the land using cut-and-choose such that
each agent has a value of at least 1/2; then, the third agent comes and he should be given a part of each
existing piece such that each of the three agents (old and new alike) will have a value of at least 1/3;
and so on. This is different than our setting since the only requirement is proportionality — there is no
“ownership” requirement.

Price of fairness

The price-of-fairness has been studied in various contexts, such as routing and load-balancing (Bertsimas
et al., 2011, 2012) and kidney exchange (Dickerson et al., 2014). The price-of-fairness in cake-cutting has
been studied in two settings:

• The cake is a one-dimensional interval and the pieces must be intervals (Aumann and Dombb, 2010).
The utilitarian-price-of-proportionality in this case is Θ(

√
n).

• The cake is arbitrary and the pieces may be arbitrary (Caragiannis et al., 2012). The utilitarian-price-
of-proportionality in this case is Θ(

√
n) too.

Both papers study the price of other fairness criteria such as envy-freeness and equitability, but do not
study the price in Nash-welfare. Additionally, they do not handle two-dimensional geometric constraints
such as rectangularity or convexity.
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Several authors study the algorithmic problem of finding a welfare-maximizing cake-allocation alloca-
tion in various settings:

1. The cake is an interval and the pieces must be connected (Aumann et al., 2013);

2. The cake is an interval and the pieces must be connected, and additionally, the division must be
proportional (Bei et al., 2012);

3. The cake and pieces are arbitrary, and the division must be envy-free (Cohler et al., 2011).

4. The cake and pieces are arbitrary, and the division must be equitable (Brams et al., 2012).

5.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal definitions).

• C is the cake to be divided. In this chapter it will be an interval or a polygon in R2.

• S is the family of pieces that are considered usable. In this chapter it will be the family of intervals,
rectangles or convex objects. An S-allocation is an allocation in which all pieces are elements of S.

• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece Xi.

In this chapter, for every constant r ∈ (0, 1), an allocation X is called r-proportional if every agent receives at
least r/n of the total cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥
r
n
·Vi(C)

(note that this definition is slightly different than in the previous two chapters). A 1-proportional division
is usually called in the literature “proportional”.

5.2.1 Cake redivision

There is an existing S-allocation of the cake: Z1, . . . , Zn. It is assumed that the old pieces Zj are pairwise-
disjoint and ∀j : Zj ∈ S, but nothing else is assumed on the division. In particular, the initial division is not
necessarily proportional, and some of C may be undivided.

It is required to create a new S-allocation of C to all agents: X1, . . . , Xn. For every constant w ∈ (0, 1),
the re-allocation satisfies the w-ownership property if every agent receives at least a fraction w of its old
value:

∀j ∈ {1, . . . , n} : Vj(Xj) ≥ w ·Vj(Zj)

Since w-ownership is not always compatible with r-proportionality for any r > 0, we define the following
weaker property. A re-allocation satisfies the democratic-ownership property if, for every k ∈ {1, . . . , n},
there are at least n− k indexes j ∈ {1, . . . , n} for which:

Vj(Xj) ≥
1

dn/ke ·Vj(Zj).

5.2.2 Social-welfare and Price-of-fairness

In addition to fairness, it is often required that a division has a high social welfare. The social welfare of an
allocation is a certain aggregate function of the normalized values of the agents (the normalized value is
the piece value divided by the total cake value). Common social welfare functions are sum (utilitarian) and
product (Nash); see Moulin (2004). We normalize them such that the maximum welfare is 1:
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• Utilitarian welfare — the arithmetic mean of the agents’ normalized values:

Wutil(X) =
1
n ∑

i∈{1,...,n}

Vi(Xi)

Vi(C)

• Nash welfare — the geometric mean of the agents’ normalized values:

WNash(X) =

(
∏

i∈{1,...,n}

Vi(Xi)

Vi(C)

)1/n

The goal of maximizing the social welfare is not always compatible with the goal of guaranteeing a fair
share to every agent. For example, Caragiannis et al. (2012) describe a simple example in which the max-
imum utilitarian welfare of a proportional allocation is O(1/n) while the maximum utilitarian welfare of
an arbitrary (unfair) allocation is O(1/

√
n). This means that society has to pay a price, in terms of social-

welfare, for insisting on fairness. This is called the price of fairness. Formally, given a social welfare function
W and a fairness criterion F, the price-of-fairness relative to W and F (also called: "the W-price-of-F") is the
ratio:

supX W(X)

supY∈F W(Y)
(*)

where the supremum at the nominator is over all allocations X and the supremum at the denominator is
over all allocations Y that also satisfy the fairness criterion F. The cited example shows that the utilitarian-
price-of-proportionality might be Ω(

√
n).

When there are geometric constraints, they affect both the numerator and the denominator of (*), i.e,
the suprema are taken only on S-allocations. Therefore, it is not a-priori clear whether the price-of-fairness
with constraints is higher or lower than without constraints.

5.3 Arbitrary Cake and Arbitrary Pieces

This section proves Theorem 5.1, which assumes no geometric constraints on the cake or pieces. The main
lemma is:

Lemma 5.3.1. Given cake-allocations Z and Y and a constant r ∈ [0, 1], there exists an allocation X such that, for
every agent i:

Vi(Xi) ≥ rVi(Yi) + (1− r)Vi(Zi)

Moreover, when r is a constant rational number, X can be found using O(n2) mark/eval queries.

Proof. We first give an existential proof. Consider the set of all possible cake-partitions. For each cake-
partition, consider the n × 1 vector of utilities of the agents. The Dubins–Spanier theorem (Dubins and
Spanier, 1961) says that the set of all such vectors is convex. Therefore, there exists an allocation X satisfying
the requirement as an equality: ∀i : Vi(Xi) = rVi(Yi) + (1− r)Vi(Zi).

Since the Dubins–Spanier theorem (Dubins and Spanier, 1961) is not constructive, we give here a con-
structive protocol for creating the allocation Z when r is a rational number, r = p/q with p < q some
positive integers. For every pair of agents i, j (including when i = j), the protocol works as follows:

Step 1. Agent i divides the piece Zi ∩Yj to q pieces that are equal in its eyes.
Step 2. Agent j takes the p pieces that are best in its eyes.
Step 3. Agent i takes the remaining q− p pieces.
(Note that when i = j, agent i receives the entire piece Zi ∩Yi).

Each agent i is allocated a piece Xi which is a union of nq pieces: np pieces that agent i took from other
agents (including itself) in piece Yi and n(q− p) pieces that were left for agent i from other agents in piece
Zi.
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From every piece Yi ∩ Zj (for j ∈ {1, . . . , n}), agent i picks the best p out of q pieces, which give it a
value of at least p

q Vi(Yi ∩ Zj). Its total value of these np pieces is thus at least rVi(Yi).
In addition, from every piece Zi ∩ Yj (for j ∈ {1, . . . , n}), agent i receives q − p out of q equal pieces,

which give it a value of exactly q−p
q Vi(Zi ∩ Yj). Its total value of these n(q − p) pieces is thus exactly

(1− r)Vi(Zi).

Proof of Theorem 5.1. We are given a pair r, w where r + w ≤ 1. Apply Lemma 5.3.1, with:
Y — any proportional allocation, which can be found by classic protocols such as Steinhaus (1948); Even

and Paz (1984).
Z — the initial allocation.

The new division satisfies r-proportionality and (1− r)-ownership. By assumption 1− r ≥ w.

Note that the redivision protocol gives to each agent a piece that is not only worth at least (1− r)Vi(Zi),
but is also a subset of Zi (in addition to a subset of Yi). This may be desirable in some cases, e.g. in land
division, the old landlords may care not only about their value but also about getting a subset of their old
plot.

Remark. The O(n2) complexity assumes the integers p, q are constant (not part of the input). If they are
considered part of the input, then the complexity becomes linear in q which is exponential in the number
of input bits. The number of queries can be reduced using concepts from number theory, but this is beyond
the scope of this paper. See McAvaney et al. (1992); Robertson and Webb (1998) for details.

Finally we show that the balance guaranteed by Theorem 5.1 is asymptotically tight.

Proof of Proposition 5.1. We are given a pair r, w where r + w > 1. Consider the following scenario. In the
initial allocation, a single agent owns the entire cake. All n agents have the same value-density and they
value the entire cake as 1. In any r-proportional division, the n− 1 landless citizens must receive a total
value of (n− 1)r/n = r − r/n. Therefore the old landlord receives at most 1− r + r/n. By assumption,
1− r < w. Therefore, if n is sufficiently large, the old landlord receives less than w of his previous value,
so the division does not satisfy w-ownership.

5.4 Interval Cake and Interval Pieces

In this section, the cake is an interval in R. Each piece in the initial division is an interval in C and each piece
in the new division must be an interval in C. We begin by proving the impossibility result (Proposition 5.2),
using a lemma opposite to Lemma 5.3.1.

Lemma 5.4.1. Let Z be a connected allocation, r ∈ (0, 1) a positive constant and k ≤ n an integer. Then there
exist valuations such that, in every connected r-proportional allocation X, for every agent j ∈ {1, . . . , k}: Vj(Xj) ≤
Vj(Zi)/b n

k c.

Proof. Assume that the valuations are as follows. Each agent j ∈ {1, . . . , k} values the piece Zj as b n
k c and

the rest of the cake as 0. The value-density of j in Zj is piecewise-uniform: It has b n
k c regions with a value of

1 and b n
k c − 1 "gaps" — regions with a value of 0. The other n− k agents are divided to k groups of roughly

equal size: the size of each group is either b n−k
k c = b n

k c − 1 or d n−k
k e = d n

k e − 1. Each agent in group j
assigns a positive value only to a unique gap in the piece Zj (so when the group size is b n

k c − 1, each gap
is wanted by exactly one agent; otherwise, there is one gap wanted by two agents). The following figure
illustrates the value-densities that are positive in piece Z1. The solid boxes represent the value-density of
agent #1; each dotted box represents the value-density of a single agent from group #1.

In any positive division, each gap in Zj must be at least partially allocated to an agent in group j. Hence,
the interval allocated to agent j must contain at most a single positive region in Zj — it is not allowed to
overlap any gap. Therefore the value of agent j is at most Vj(Zj)/b n

k c.
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Proof of Proposition 5.2. Apply Lemma 5.4.1 with Z = the initial allocation.

To prove the matching positive result (Theorem 5.2), we introduce a protocol for fair division of an
"archipelago" — a cake made of one or more interval "islands".

Lemma 5.4.2. Let C be a cake made of m ≥ 1 pairwise-disjoint intervals: C = Z1 ∪ · · · ∪ Zm. There exists a
division X of C among n agents, in which (a) Each agent i receives an interval entirely contained in one of the islands:
∀i : ∃j : Xi ⊆ Zj, and (b) Each agent receives a value of at least Vi(C)/(n + m− 1). Moreover, X can be found
using O(mn log n) mark/eval queries.

Proof. We normalize the value measures of all agents such that the total value of C is n + m − 1. The
following recursive protocol allocates each agent an interval with a value of at least 1.

Base: m = 1. The cake is a single interval and its total value is n. Use the Even–Paz protocol (Even and
Paz, 1984) to allocate each agent an interval with a value of at least 1.
Step: m > 1.

1. Ask each agent i ∈ {1, . . . , n} to evaluate the island Zm.
2. Order the agents in descending order of their evaluation: V1(Zm) ≥ · · · ≥ Vn(Zm).
3. Let q be the largest integer such that Vq(Zm) ≥ q (or 0 is already V1(Zm) < 1).
4. If q = 0, discard the island Zm. Otherwise (q ≥ 1),

divide Zm proportionally among the agents {1, . . . , q} using Even–Paz protocol (Even and Paz,
1984).

5. Divide the remaining m− 1 islands recursively among the remaining n− q agents.

The descending order of the agents guarantees that: V1(Zm) ≥ · · · ≥ Vq(Zm) ≥ q. So in step #4, the
interval Zm is divided proportionally among q agents that value it as at least q, and each of these agents
receives an interval with a value of at least 1.

By definition of q, Vq+1(Zm) < q + 1 (this is true even when q = 0). By the descending order of the
agents, the same is true for all remaining agents {q + 1, . . . , n}. Therefore, all remaining agents value the
remaining cake as more than (m+ n− 1)− (q+ 1) = (n− q)+ (m− 1)− 1. Since there are n− q agents and
m− 1 islands, the recursive algorithm gives each agent an interval with value at least 1. The Even–
Paz protocol requires O(n log n) queries, and it is done at most m times, so the total number of queries is
O(mn log n).

Remark. The fraction of 1/(n + m− 1), guaranteed by Lemma 5.4.2, is the largest that can be guaranteed.
To see this, assume that all agents i ∈ {1, . . . , n} have the same value-measures — they value the islands
Z1, . . . , Zm−1 as 1 and the island Zm as n (so their total cake value is n + m− 1). The piece of every agent
must be entirely contained in a single island. If any agent receives a piece in islands Z1, . . . , Zm−1, then that
agent receives a value of at most 1. Otherwise, if all n agents receive a piece in Zm, then the value of at least
one agent is at most 1. In both cases, at least one agent receives a fraction of at most 1/(n + m− 1) the cake
value.

Proof of Theorem 5.2. Our protocol for re-division of an interval has three steps.

Step 1. Given the original partial allocation Z1 ∪ · · · Zn ⊆ C, extend it to a complete allocation
Z′1 ∪ · · · Z′n = C, by attaching each "blank" (unallocated interval in C) arbitrarily to one of the two
adjacent allocated intervals. This, of course, does not harm the old values: ∀j ∈ {1, . . . , n} : Vj(Z′j) ≥
Vj(Zj).

Step 2. For each agent j ∈ {1, . . . , n}, add a “helper agent” j∗ and assign it a value-density function
v∗j :

v∗j (x) = vj(x) if x ∈ Z′j
v∗j (x) = 0 if x /∈ Z′j

Use the protocol of Lemma 5.4.2 with n + n agents, regarding the cake C as an archipelago and the
pieces Z′1, . . . , Z′n as the islands.
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⇒

Figure 5.3: The allocation-completion step: input and output.

Step 3. Give each agent j ∈ {1, . . . , n} either the interval allocated to its normal agent j or the
interval allocated to its helper agent j∗, whichever is more valuable for it.

We now prove that the resulting allocation is 1/3-proportional and satisfies the democratic-ownership
property.

(a) Proof of 1/3-proportionality. We apply Lemma 5.4.2 with 2n agents and m = n islands. Each of the 2n
agents receives an interval contained in one of the pieces Z′1, . . . , Z′n, with a value of at least 1/((2n)+ n− 1)
its total cake value. This value is larger than 1/(3n).

(b) Proof of democratic-ownership. We focus on the n helper agents. First, by Lemma 5.4.2, every helper
agent j∗ must receive an interval contained in Z′j, since its value is positive only in the island Zj. Moreover,
by the pigeonhole principle, for every integer k ≤ n, at most k islands are populated by at least d n

k e normal
agents. Hence, at least n− k islands are populated by at most d n

k e − 1 normal agents. Adding the helper
agent, these islands are populated by at most d n

k e agents. Hence, the proportional allocation of step #4 in
the protocol of Lemma 5.4.2 gives these helper agents an interval subset of Z′j, which is worth for agent j at
least Vj(Z′j)/d n

k e.

5.5 Polygonal Cake and Polygonal Pieces

Rectangle cake and pieces. Initially, we assume that the cake is a rectangle in R2. Each piece in the initial
division is a rectangle parallel to C and each piece in the new division must be a rectangle parallel to C.

We would like to use the re-division protocol of Theorem 5.2. Steps #2 and #3 are easily adapted: the
Even–Paz protocol (Even and Paz, 1984) can operate on a rectangular cake, requiring the agents to make
cuts parallel to the cake sides. This guarantees that the pieces are rectangles.

However, there is one obstacle. Step #1, the allocation-completion step, is no longer trivial. We cannot
just attach each unallocated part of C to an allocated rectangle, since the result will not necessarily be a
rectangle. We still need to extend the initial partial allocation Z1 ∪ · · · Zn ⊆ C to a complete allocation, but
the number of rectangles in the complete allocation might be larger than n, since we might have unattached
blanks.

Our goal, then, is to find a partition of C to rectangles, Z′1 ∪ · · · Z′n+b = C, with b ≥ 0, such that every
input rectangle is contained in a unique output rectangle: ∀j ∈ {1, . . . , n} : Zj ⊆ Z′j. The additional b
rectangles are called blanks. In Step 3, we will have m = n + b islands and 2n agents, so the value guarantee
per agent will be 1/((2n) + (n + b)− 1) = 1/(3n + b− 1); therefore, we would like the number of blanks
b to be as small as possible.

An example of the input and output of the allocation-completion step is shown in Figure 5.3. Here,
b = 1 since there is one blank — Z′5. In this case b = 1 is minimal.

Convex cake and pieces. The situation is similar when C is convex and the pieces should be convex.
The Even–Paz protocol can operate on a convex cake, requiring the agents to make cuts parallel to the
each other. This guarantees that the pieces will be convex. In Step #1, a similar challenge arises. We
have an initial partial allocation Z1 ∪ · · · Zn ⊆ C, where each Zj is convex. We need a complete allocation
Z′1 ∪ · · · Z′n+b = C, where each Z′j is convex, every input piece is contained in a unique output piece, and
the number of blanks b is minimal.
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Rectilinear cake and rectangular pieces. There are efficient algorithms for partitioning a rectilinear poly-
gon to a minimal number of rectangles. A rectilinear polygon with T reflex vertexes can be partitioned in
time O(poly(T)) to at most T + 1 rectangles (Keil, 2000; Eppstein, 2010), and this bound is tight when the
vertexes of C are in general position. Our goal is to bound b — the number of blank rectangles. Therefore,
it is expected that the bound should depend on T, in addition to m.

The allocation-completion step for all two-dimensional settings is handled by the Akopyan and Segal-
Halevi (2016), who prove the following lemma:

Lemma 5.5.1 ((?)). There is an O(m)-time algorithm that extends a partial allocation Z1 ∪ · · · Zm ⊆ C to a complete
allocation Z′1 ∪ · · · Z′m+b = C, such that there are:

(a) at most m− 2
√

m−O(1) rectangular blanks when the cake & pieces are parallel rectangles:
(b) at most 2m− 5 convex blanks when the cake and pieces are convex polygons;
(c) at most m + T − 2

√
m−O(1) rectangular blanks when the cake is rectilinear with T reflex vertexes and the

pieces are rectangles. In this case the run-time is O(m + poly(T)).
The numbers of blanks in all cases are tight.

Proof of Theorems 5.3, 5.4 ,5.5 . Use the protocol of Theorem 5.2, plugging into Step #1 the algorithm of
Lemma 5.5.1 with m = n. The value per agent is at least 1/(3n + b− 1), which is:

(a) at least 1/(4n− 2
√

n) > 1/(4n) in the rectangle case — satisfying 1/4-proportionality;
(b) at least 1/(5n− 6) ≥ 1/(5n) in the convex case — satisfying 1/5-proportionality;
(c) at least 1/(4n + T − 2

√
n) > 1/(4n + T) in the rectilinear case.

5.6 Price-of-Fairness Bounds

In this section, our redivision protocols are used to prove upper bounds on the price of partial-proportion-
ality.

Theorem 5.6 follows directly from Theorem 5.1 by taking the original division to be a utilitarian-optimal
division.

The proofs of Theorems 5.7, 5.8 and 5.9 are similar; only the constants are different. We present below
only the proof of Theorem 5.8; to get the proofs of the other theorems, replace the constant "4" with "3" or
"5" respectively.

The first part of Theorem 5.8 — regarding the utilitarian price — is proved by the following:

Lemma 5.6.1. Let Z be a utilitarian-optimal rectangular division of a cake C among n agents who value the entire
cake C as 1. Let U be the utilitarian welfare of Z:

U :=
1
n

n

∑
j=1

Vj(Zj)

Then, there exists a (1/4)-proportional rectangular allocation of C to these same n agents with utilitarian welfare W,
such that U/W ∈ O(n1/2).

Proof. Apply the redivision protocol of Section 5.5 to the existing division by setting m = n and treating
all n agents as "old". The partial-proportionality guarantee of that protocol ensures that the new division
is 1/4-proportional. The partial-ownership of that protocol ensures that for every integer k ∈ {0, . . . , n},
there is a set Sk containing at least n− k agents whose value is more than max( kVj(Zj)

2n , 1
4n ). Renumber the

agents in the following way. Pick an agent from Sn−1 (which contains at least one agent) and number it
n − 1. Pick an agent from Sn−2 (which contains at least one other agent) and number it n − 2. Continue
this way to number the agents by k = n − 1, . . . , 0. Now, the utilitarian welfare of the new division is
lower-bounded by:

W >
1
n

n−1

∑
k=0

max(
kVk(Zk)

2n
,

1
4n

) ≥ 1
n
· 1

4n
·

n−1

∑
k=0

max(kVk(Zk), 1)

and the utilitarian welfare ratio is at most:

U
W

< 4n · ∑n−1
k=0 Vk(Zk)

∑n−1
k=0 max(k ·Vk(Zk), 1)
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Denote the ratio in the right-hand side by NUM
DEN . Let ak = Vk(Zk), so that NUM = ∑n−1

k=0 ak and DEN =

∑n−1
k=0 max(k · ak, 1). To get an upper bound on U/W, we find a sequence a0, . . . , an−1 that maximizes NUM

DEN
subject to ∀k : 0 ≤ ak ≤ 1.

Observation 1. in a maximizing sequence, a0 = 1 and there is no k > 0 such that ak < 1/k. Proof :
Setting such ak to 1/k increases NUM and does not change DEN.

Observation 2. A maximizing sequence must be weakly-decreasing (for all k < k′, ak′ ≥ ak). Proof : if
there exists k < k′ such that ak < ak′ , then we can swap ak with ak′ . This does not change NUM but strictly
decreases DEN.

Observation 3. In a maximizing sequence, there is no k > 0 such that 1/k < ak < 1. Proof:3 If
1/k < ak < 1 then for some sufficiently small ε > 0, both ak + ε and ak − ε are in (1/k, 1) and replacing
ak with ak ± ε makes the ratio strictly smaller than the maximum. Replacing ak with ak + ε makes the ratio
NUM+ε
DEN+kε ; this new ratio is smaller than NUM

DEN so ε ·DEN < kε ·NUM. Replacing ak with ak − ε makes the
ratio NUM−ε

DEN−kε ; that new ratio is smaller than NUM
DEN so−ε ·DEN < −kε ·NUM. But the two latter inequalities

ε ·DEN < kε ·NUM and −ε ·DEN < −kε ·NUM are contradictory. Hence, the assumption 1/k < ak < 1
is false.

Observations 1-3 imply that a maximizing sequence has a very specific format. It is characterized by an
integer l ∈ {0, . . . , n− 1} such that, for all k ≤ l, ak = 1 and for all k ≥ l + 1, ak = 1/k. So:

NUM
DEN

=
∑n−1

k=0 ak

∑n−1
k=0 max(k · ak, 1)

=
(l + 1) + (Hn−1 − Hl)
1
2 l(l + 1) + (n− l − 1)

<
2(l + Hn + 1)

l2 − l + 2(n− 1)

where Hn = ∑n
k=1(1/k) is the n-th harmonic number.

The number l is integer, but the expression is bounded by the maximum attained when l is allowed
to be real. By standard calculus we get that the real value of l which maximizes the above expression is
l =

√
2(n− 1) + (Hn + 1)(Hn + 2)− (Hn + 1) = Θ(

√
n). Substituting into the above inequality gives:

NUM
DEN

≤ Θ(n1/2)

Θ(n)
= Θ(n−1/2) =⇒ U

W
< 4n · NUM

DEN
= O(n1/2)

as claimed.

The second part of Theorem 5.8 — regarding the Nash price — is proved by the following:

Lemma 5.6.2. Let Z be a Nash-optimal rectangular division of a cake C among n agents who value the entire cake C
as 1. Let U be the Nash welfare of Z (the geometric mean of the values):

Un =
n

∏
j=1

Vj(Zj)

Then, there exists a (1/4)-proportional rectangular allocation of C to these same n agents with Nash welfare W, and
U/W < 11.2.

Proof. Apply the redivision protocol of Section 5.5 to redivide the existing n pieces among the n agents.
Renumber the agents as in Lemma 5.6.1. The Nash welfare of the new division, raised to the n-th power,
can be bounded as:

Wn >
n−1

∏
k=0

max(
k ·Vk(Zk)

2n
,

1
4n

) ≥ (
1

4n
)n

n−1

∏
k=0

max(k ·Vk(Zk), 1)

and the ratio of the new welfare to the previous welfare can be bounded as:

Un

Wn < (4n)n · ∏n−1
k=0 Vk(Zk)

∏n−1
k=0 max(kVk(Zk), 1)

=
(4n)n

∏n−1
k=0 max(k, 1/Vk(Zk))

The nominator does not depend on the valuations, so the ratio is maximized when the denominator is
minimized. This happens when each factor in the product is minimized. The minimal value of the 0-th

3We are grateful to Varun Dubey for suggesting this proof in: http://math.stackexchange.com/q/1609071/29780
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factor is 1 and the minimal value of the other factors is k. Hence:

Un

Wn <
(4n)n

∏n−1
k=1 k

=
(4n)n

(n− 1)!
=

n(4n)n

n!
≈ n(4n)n
√

2πn(n/e)n
=

√
n

2π
· (4e)n

where e is the base of the natural logarithm. Taking the n-th root gives U/W < (4e) ·
√

n/2π
1/n

. A

calculation in Wolfram Alpha shows that the rightmost term
√

n/2π
1/n

is bounded globally by 1.03, so all
in all U/W < 1.03 · 4 · e < 11.2 as claimed.

5.7 Conclusions and Future Work

Two-dimensional division , the price-of-fairness and the re-division problem are relatively new topics, and
there is a lot of room for future research in each of them.

5.7.1 Handling other geometric constraints

Two steps in our redivision algorithm are sensitive to the geometric constraint: the allocation-completion
algorithm (Step #1 in Theorem 5.2), and the Even–Paz protocol (Step #4 in Lemma 5.4.2). We describe how
these steps are affected by several alternative constraints.

1. Convexity in three or more dimensions. The Even–Paz protocol can easily operate on a multi-dimensional
convex object, requiring the agents to cut using hyper-planes parallel to each other. However, we currently
do not have an allocation-completion algorithm for convex objects (or even for boxes) in three or more
dimensions.

2. Path-connectivity in two dimensions. If the pieces have to be path-connected but not necessarily
convex, then the allocation-completion step is much easier and no blanks are created (Akopyan and Segal-
Halevi, 2016). However, it is not clear how to use the Even–Paz protocol in this case: when the cake is
connected but not convex, making parallel cuts might create disconnected pieces.

3. Fatness. A fat object is an object with a bounded length/width ratio, such as a square. Fatness makes
sense in land division: if you are entitled to a 900 square meters of land, you will probably prefer to get them
as a 30× 30 square or a 45× 20 rectangle rather than 9000× 0.1 sliver. A division problem with fatness
requirement cannot be reduced to one-dimensional division. There exist specialized division protocols
that support fatness constraints Segal-Halevi et al. (2015a); ? and they can be used instead of the Even–Paz
protocol. However, we do not have an allocation-completion algorithm with fatness constraints.

4. Two pieces per agent. Theorem 5.1 allows an unlimited number of pieces per agent, while the other
theorems allow only a single piece per agent. We do not know what happens between these two extremes.
For example, if the cake is a one-dimensional interval and each agent can get at most two intervals, what
ownership-proportionality combinations are attainable?

5.7.2 Handling other fairness requirements

1. Envy-freeness. In this paper we took proportionality as a benchmark of fairness. An alternative bench-
mark is envy-freeness. Envy-freeness means that each agent values its piece at least as much as each of the
other pieces. Similarly, r-envy-freeness means that each agent values its piece as at least r times the value
of each of the other pieces. For what pairs r, w is r-envy-freeness compatible with w-ownership? With
democratic-ownership?

2. Pareto-efficiency. From an existential point of view, Pareto-efficiency does not add much difficulty.
Both r-proportionality and w-ownership are preserved by Pareto-improvements. therefore, if there exists
a division satisfying r-proportionality and w-ownership (or democratic-ownership), then there also exists
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a Pareto-optimal division satisfying these properties. However, the algorithmic task of finding such a
division is not yet solved.

Note that Pareto-efficiency is “automatically” satisfied when the division is connected, envy-free, and
all value-densities are strictly positive (Brams and Taylor, 1996, page 150).

5.7.3 Improving the constants

Our redivision protocol is 1/3 or 1/4 or 1/5-proportional (depending on the geometric constraint). We see
two potential ways to improve these numbers.

1. In Step #2 of our redivision protocol, we add n helper agents, so the total number of agents is 2n.
However, in the Step #3, each agent chooses either its helper or its normal agent, while the other agent is
“wasted”. If we could know the n choices of the agents in advance, we could employ only n agents overall
and this would subtract 1 from the constant (the constants would become 1/2 or 1/3 or 1/4). One way
to analyze this scenario is to define a strategic game in which each agent has two possible strategies: “nor-
mal” vs. “helper”. A pure-strategy Nash equilibrium in this game corresponds to an allocation satisfying
the partial-proportionality and the democratic-ownership requirements. We conjecture that a pure-strategy
Nash equilibrium indeed exists. While finding a Nash equilibrium is usually a computationally-hard prob-
lem, it may be useful as an existential result.

2. In Lemma 5.4.2, we treat each existing piece Zj as an "island" and insist that each new piece be entirely
contained in an existing piece, i.e, we do not cross the existing division lines. This may be desirable in the
context of land division, since it respects the Uti Possidetis principle (Lalonde, 2002). However, it implies
that the resulting division can only be partially-proportional and never fully proportional (as shown by the
remark following Lemma 5.4.2). It may be possible to improve the proportionality guarantees by devising
a different redivision procedure that does cross the existing division lines. This may require some new
geometric techniques.

These possibilities invoke the following open question: what is the highest level of proportionality that
is compatible with democratic-ownership?

5.7.4 Price-of-fairness

It is not clear whether the upper bounds of our Theorems 5.6-5.9 are tight.
In particular, for the case of interval cake and interval pieces, there is a lower bound of Ω(

√
n) on the

utilitarian price of proportionality. However, we could not generalize it to the price of partial proportion-
ality, and it is interesting to know which of the following two options is correct: (a) there is a lower bound
of Ω(

√
n) matching our Theorem 5.7, or (b) the actual price of partial-proportionality is o(

√
n). The latter

option would imply that partial-proportionality is asymptotically "cheaper" than full proportionality, in
social welfare terms.

Regarding the Nash price-of-fairness, it is known (Sziklai and Segal-Halevi, 2015) that with arbitrary
pieces, every Nash-optimal allocation is envy-free (hence also proportional), so the Nash price of envy-
freeness (hence, of proportionality) is 1. However, this is not true when the pieces must be connected. We
do not have a lower bound for this case.
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Chapter 5 Appendix
5.A Fair Division of a Rectilinear Polygon

This appendix shows what proportionality guarantees are possible when the cake is a rectilinear polygon,
the pieces have to be rectangles (parallel to the sides of the cake), and there are no ownership requirements.
It can be seen as a baseline for Theorem 5.5.

Lemma 5.A.1. Let C be a rectilinear polygon with T reflex vertexes. It is possible to divide C among n agents such
that the value of each agent is at least 1/(n + T) of the total cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥
Vi(C)
n + T

The fraction 1/(n + T) is the largest that can be guaranteed.

Proof. A rectilinear polygon with T reflex vertexes can be partitioned in time O(poly(T)) to at most T + 1
rectangles (Keil, 2000; Eppstein, 2010). Denote these rectangles by Zj, so that:

C = Z1 ∪ · · · ∪ ZT+1

Apply the archipelago-division protocol of Lemma 5.4.2 with m = T + 1. The value-guarantee per
agent is at least 1/(n + m− 1) which is at least 1/(n + T), as claimed.

For the upper bound, consider a staircase-shaped cake with T + 1 stairs. as illustrated below (for T = 4):

All agents have the same value-measure, which is concentrated in the diamond-shapes: the top diamond
is worth n and each of the other diamonds is worth 1 (so for all agents, the total cake value is n + T).

Any rectangle in C can touch at most a single diamond. There are two cases:
(a) All n agents touch the top diamond. Then, their total value is n and at least one of them must receive

a value of at most 1.
(b) At least one agent touches one of the T bottom diamonds. Then, the value of that agent is at most 1.
In any case, at least one agent receives at most a fraction 1/(n + T) of the total cake value, as claimed.
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Chapter 6

Family Ownership
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6.1 Introduction

In most fair division problems, the resource is divided among individual agents, and the fairness of a
division is assessed based on the valuation of each agent. However, in real life, goods are often owned and
used by groups. As an example, consider a land-estate inherited by k families, or a nature reserve that has to
be divided among k states. The land should be divided to k pieces, one piece per group. Each group’s share
is then used by all members of the group simultaneously. The land-plot allotted to a family is inhabited
by the entire family. The share of the nature-reserve alloted to a state becomes a national park open to
all citizens of that state. In economic terms, the alloted piece becomes a "club good" (Buchanan, 1965).
The happiness of each group member depends on his/her valuation of the entire share of the group. But,
in each group there are different people with different valuations. The same division can be considered
proportional by some family members and not proportional by other members of the same family. The
main question in this chapter is:

How should we assess the fairness of a division among families?
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6.1.1 Results

One option that comes to mind is to aggregate the valuations in each family to a single family valuation
(also known as: collective welfare function). Following the utilitarian tradition (Bentham, 1789), the family-
valuation can be defined as the sum or (equivalently) the arithmetic average of the valuations of all family
members. We call a division average-proportional if every family receives a share with an average value
(averaged over all family members) of at least 1/k of its average value of the entire cake. This defini-
tion makes the family-division problem easy, since each family can be regarded as a single agent, so the
problem reduces to fair division among k agents. Classic results (Steinhaus, 1948) imply that an average-
proportional division always exists (Section 6.3).

The problem with average-proportionality is that it makes sense only when the numeric values of the
agents’ valuations are meaningful and they are all measured in the same units, e.g. in dollars (see chapter
3 of Moulin (2004) for some real-life examples of such situations). However, if the valuations represent
individual happiness measures that cannot be put on a common scale, then their sum is meaningless, and
other fairness criteria should be used.

A second option is to require that all members of every family agree that the division is fair. We call a
division unanimous-proportional if every agent values his/her family’s share as at least 1/k of the total
value. The advantage of this definition is that it does not need to assume that all valuations share a common
scale. A unanimous-proportional division always exists (Section 6.4).

A disadvantage of unanimous-proportionality, compared to average-proportionality, is that unani-
mous-proportional divisions might be highly fractional. As an illustration, if the cake is an interval, then
there always exists an average-proportional division in which each family receives an interval. However, a
unanimous-proportional division in which each family receives an interval might not exist, and moreover,
in all unanimous-proportional divisions, the total number of intervals might have to be at least n - the
number of agents (Section 6.4). When the number of agents is large, as in the case of dividing land between
states, such divisions might be impractical.

In democratic societies, decisions are almost never accepted unanimously. In fact, when the number of
citizens is large, it may be impossible to attain unanimity on even the most trivial issue. The simplest de-
cision rule in such societies is the majority rule. Inspired by this rule, we suggest a third fairness criterion.
We call a division democratic-proportional if at least half the citizens in each family value their family’s
share as at least 1/k. This definition can be justified according to the following process. After a division is
proposed, each group conducts a referendum in which each citizen approves the division if he/she feels
that the division is proportional. The division is implemented only if, in every group, at least half of its
members approve it. The democratic-proportionality criterion combines some advantages of the other two
criteria. It is similar to unanimous-proportionality in that it does not need to assume that all valuations
share a common scale. When there are k = 2 families with equal rights, it is similar to average-propor-
tionality in that it can be satisfied with connected pieces - there always exists a democratic-proportional
division in which each family receives a single connected piece. An additional advantage of democratic-
proportionality in this case is that it can be found by an efficient division protocol (Section 6.5). 1

The present paper compares the three fairness criteria in different settings: the number of families can
be two or more than two, and the entitlements of the families can be equal or different. In the common
case when there are two families with equal entitlements, democratic-proportionality is apparently the
most practical criterion, since it guarantees the existence of connected divisions without assuming a com-
mon utility scale. Although democratic-fairness might leave up to half the citizens unhappy, this may be
unavoidable in real-life situations. This adds an aspect to Winston Churchil’s dictum: “democracy is the
worst form of government, except all the others that have been tried”.

6.1.2 Related Work

Group-envy-freeness and on-the-fly coalitions

Berliant et al. (1992); Hüsseinov (2011) study the concept of group-envy-free cake-cutting. Their model is the
standard cake-cutting model in which the cake is divided among individuals (and not among families as in
our model). They define a group-envy-free division as a division in which no coalition of individuals can

1In contrast, average-proportional and unanimous-proportional allocations cannot be found by any finite protocol. We omit
the details here since the present chapter focuses on existence rather than computational efficiency. More details can be found in
Segal-Halevi and Nitzan (2016).
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take the pieces allocated to another coalition with the same number of individuals and re-divide the pieces
among its members such that all members are weakly better-off. Coalitions are also studied by Dall’Aglio
et al. (2009); Dall’Aglio and Di Luca (2014).

In our setting, the families are pre-determined and the agents do not form coalitions on-the-fly. In an
alternative model, in which agents are allowed to form coalitions based on their preferences, the family-
cake-cutting problem becomes easier. For instance, it is easy to achieve a unanimous-proportional division
with connected pieces between two coalitions: ask each agent to mark its median line, find the median of
all medians, then divide the agents to two coalitions according to whether their median line is to the left or
to the right of the median-of-medians.

Fair division with public goods

In our setting, the piece given to each family is considered a "public good" in this specific family. The
existence of fair allocations of homogeneous goods when some of the goods are public has been studied
e.g. by Diamantaras (1992); Diamantaras and Wilkie (1994, 1996); Guth and Kliemt (2002). In these studies,
each good is either private (consumed by a single agent) or public (consumed by all agents). In the present
paper, each piece of land is consumed by all agents in a single family - a situation not captured by existing
public-good models.

Family preferences in matching markets

Besides land division, family preferences are important in matching markets, too. For example, when
matching doctors to hospitals, usually a husband and a wife who are both doctors want to be matched
to the same hospital. This issue poses a substantial challenge to stable-matching mechanisms (Klaus and
Klijn, 2005, 2007; Kojima et al., 2013; Ashlagi et al., 2014).

Fairness in group decisions

The notion of fairness between groups has been studied empirically in the context of the well-known ulti-
matum game. In the standard version of this game, an individual agent (the proposer) suggests a division of
a sum of money to another individual (the responder), which can either approve or reject it. In the group
version, either the proposer or the responder or both are groups of agents. The groups have to decide
together what division to propose and whether to accept a proposed division.

Experiments by Robert and Carnevale (1997); Bornstein and Yaniv (1998) show that, in general, groups
tend to act more rationally by proposing and accepting divisions which are less fair. Messick et al. (1997)
studies the effect of different group-decision rules while Santos et al. (2015) uses a threshold decision rule
which is a generalized version of our majority rule (an allocation is accepted if at least M agents in the
responder group vote to accept it).

These studies are only tangentially relevant to the present paper, since they deal with a much simpler di-
vision problem in which the divided good is homogeneous (money) rather than heterogeneous (cake/land).

Non-additive utilities

As explained in Sections 6.4 and 6.5, the difficulty with unanimous-proportionality and democratic-pro-
portionality is that the associated family-valuation functions are not additive. In the previous chapters we
encountered value-functions that are not additive because of the geometry; here, the value-functions are
not additive because of the family constraints. See subsection 4.1.2 on page 60 for related work.

6.2 Model

We briefly recall some terminology from Chapter 2 (see there for formal definitions).

• C is the cake to be divided. In this chapter we return to the one-dimensional model and assume that
C is an interval in R.

• n is the number of agents participating in the division. In this chapter, n is the total number of agents
in all families together.
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• For each agent i ∈ {1, . . . , n}, Vi(Xi) is agent i’s value-measure of the piece Xi. In this chapter we
adapt the normalization assumption common in the cake-cutting literature, and assume that ∀i :
Vi(∅) = 0, Vi(C) = 1.

6.2.1 Families and entitlements

There are k families, denoted by Fj, j ∈ {1, ..., k}.
The number of agents in Fj is nj. Each agent is a member of exactly one family, so n = ∑k

j=1 nj.
For each family j, there is a positive weight wj representing the entitlement of this family. The sum of

all weights is one: ∑k
j=1 wj = 1.

In the simplest setting, the families have equal entitlements, i.e, for each j ∈ {1, . . . , k}: wj = 1/k. Equal
entitlements make sense, for example, when k married siblings inherit their parents’ estate. While an heir
will probably like to take his family’s preferences into account when selecting a share, each heir is entitled
to 1/k of the estate regardless of the size of his/her family.

In general, each family may have a different entitlement. The entitlement of a family may depend on
its size but may also depend on other factors. For example, when two states jointly discover a new island,
they will probably want to divide the island between them in proportion to their investment and not in
proportion their population.

6.2.2 Allocations and components

An allocation is a vector of k pieces, X = (X1, . . . , Xk), one piece per family, such that the Xj are pairwise-
disjoint and ∪jXj = C.

Each piece is a finite union of intervals. We denote by Comp(Xj) the number of connected components
(intervals) in the piece Xj, and by Comp(X) the total number of components in the allocation X, i.e:

Comp(X) =
k

∑
j=1

Comp(Xj)

Ideally, we would like that each piece be connected, i.e, ∀i : Comp(Xi) = 1 and Comp(X) = k. This
requirement is especially meaningful when the divided resource is land, since a contiguous piece of land
is much easier to use than a collection of disconnected patches.

However, a division with connected pieces is not always possible. Several countries have a discon-
nected territory. A striking example is the India-Bangladesh border. According to Wikipedia,2 “Within the
main body of Bangladesh were 102 enclaves of Indian territory, which in turn contained 21 Bangladeshi
counter-enclaves, one of which contained an Indian counter-counter-enclave... within the Indian mainland
were 71 Bangladeshi enclaves, containing 3 Indian counter-enclaves”. Another example is Baarle-Hertog -
a Belgian municipality made of 24 separate parcels of land, most of which are exclaves in the Netherlands.3

In case a division with connected pieces is not possible, it is still desirable that the number of connec-
tivity components - Comp(X) - be as small as possible. This is a common requirement in the cake-cutting
literature. When the cake is an interval, the components are sub-intervals and their number is one plus
the number of cuts. Hence, the number of components is minimized by minimizing the number of cuts
(Robertson and Webb, 1995; Webb, 1997; Shishido and Zeng, 1999; Barbanel and Brams, 2004, 2014). In a
realistic, 3-dimensional world, the additional dimensions can be used to connect the components, e.g, by
bridges or tunnels. Still, it is desirable to minimize the number of components in the original division in or-
der to reduce the number of required bridges/tunnels. The goal of minimizing the number of components
is also pursued in real-life politics. Going back to India and Bangladesh, after many years of negotiations
they finally started to exchange most of their enclaves during the years 2015–2016. This is expected to
reduce the number of components from 200 to a more reasonable number.

2Wikipedia page “India–Bangladesh enclaves”.
3Wikipedia page “Baarle-Hertog”. Many other examples are listed in Wikipedia page “List of enclaves and exclaves”. We are

grateful to Ian Turton for the references.

105



6.2.3 Three fairness criteria

To define the criterion of average-proportionality, consider the following family-valuation functions:

Wavg
j (Xj) =

∑i∈Fj
Vi(Xj)

nj
for j ∈ {1, ..., k}.

An allocation X is called average-proportional if

∀j ∈ {1, . . . , k} : Wavg
j (Xj) ≥ wj

An allocation X is called unanimous-proportional if:

∀j ∈ {1, . . . , k} : ∀i ∈ Fj : Vi(Xj) ≥ wj

An allocation X is called democratic-proportional if for all j ∈ {1, . . . , k}, for at least half the members
i ∈ Fj:

Vi(Xj) ≥ wj

where wj is the entitlement of family j.
Of these three fairness criteria, unanimous-proportionality is clearly the strongest: it implies both aver-

age-proportionality and democratic-proportionality. The other two definitions do not imply each other, as
shown in the following example.

Consider a land-estate consisting of four districts. It has to be divided between two families: (1) {Al-
ice,Bob,Charlie} and (2) {David,Eva,Frankie}. The families have equal entitlements, i.e, w1 = w2 = 1/2.
Each member’s valuation of each district is shown in the table below:

Alice 60 30 3 3
Bob 50 40 3 3

Charlie 10 80 3 3
David 3 3 60 30

Eva 3 3 60 30
Frankie 3 3 0 90

Note that the value of the entire land is 96 according to all agents, so proportionality implies that each
family should get at least 48.

If the two leftmost districts are given to family 1 and the two rightmost districts are given to family 2,
then the division is unanimous-proportional, since each member of each family feels that his family’s share
is worth 90. This division is also, of course, average-proportional and democratic-proportional.

If only the single leftmost district is given to family 1 and the other three districts are given to family
2, then the division is still democratic-proportional, since Alice and Bob feel that their family received more
than 48. However, Charlie feels that his family received only 10, so the division is not unanimous-propor-
tional. Moreover, the division is not average-proportional since the average valuation of family 1 is only
(60+50+10)/3=40.

If the three leftmost districts are given to family 1 and only the rightmost district is given to family 2,
then the division is average-proportional, since family 2’s average valuation of its share is (30+30+90)/3=50.
However, it is not unanimous-proportional and not even democratic-proportional, since David and Eva
feel that their share is worth only 30.

A property of cake partitions is called feasible if for every k families and n agents there exists an alloca-
tion satisfying this property. Otherwise, the property is called infeasible. In the following sections we study
the feasibility of the three fairness criteria in turn.

6.3 Average fairness

Given any n additive value functions Vi, the k family-valuations Wavg
j defined above are also additive.

Therefore, the family cake-cutting problem can be reduced to the classic problem of cake-cutting among
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individuals: there are k individual agents, indexed by j ∈ {1, . . . , k}, and the valuation of agent j is the
additive value measure Wavg

j . This implies the following easy positive result:

Theorem 6.3.1. When families have equal entitlements, average-proportionality with connected pieces is feasible.

Proof. This follows from classic results proving the existence of connected proportional allocations for in-
dividual agents (Steinhaus, 1948; Even and Paz, 1984).

The situation is more difficult with different entitlements, as shown by the following negative result.

Theorem 6.3.2. When families have different entitlements, average-proportionality with connected pieces may be
infeasible. Moreover, at least 2k− 1 components may be required to attain an average-proportional allocation.

Proof. Suppose there are k families, the entitlement of family 1 is k2

k2+k−1 and the entitlement of each of the
the other families is 1

k2+k−1 . The cake consists of 2k− 1 districts and the average family valuations in these
districts are:

Family 1 1 0 1 0 1 0 1 ... 1 0 1
Family 2 0 1 0 0 0 0 0 ... 0 0 0
Family 3 0 0 0 1 0 0 0 ... 0 0 0
Family 4 0 0 0 0 0 1 0 ... 0 0 0

... ...
Family k 0 0 0 0 0 0 0 ... 0 1 0

Family 1 must receive more than (k − 1)/k of the cake, so it must receive a positive slice of each of its k
positive districts. But, it cannot receive a single interval that touches two of its positive districts, since such
an interval will leave one of the other families with zero value. Therefore, family 1 must receive at least k
components. Each of the other families must receive one component, so the total number of components is
at least 2k− 1.

We do not know if the lower bound of 2k − 1 is tight even for individual agents.4 Interestingly, our
results on unanimous-proportional division with different entitlements can be used to attain a non-trivial
upper bound on the number of cuts required for dividing a cake among k individuals with different enti-
tlements.

Lemma 6.3.3. Given k agents with different entitlements, a proportional division with dlog2 ke · (2k − 2) + 1
components is feasible.

Proof. In Theorem 6.4.7 we will prove that, given n agents in k families with different entitlements, a unan-
imous-proportional division with dlog2 ke · (2n− 2) + 1 components is feasible. Now, suppose each family
has a single member and let n = k.

This immediately implies the same upper bound for average-proportionality:

Theorem 6.3.4. Given k families with different entitlements, an average-proportional division with dlog2 ke · (2k−
2) + 1 components is feasible.

This matches the lower bound of 2k− 1 for k = 2 families, but leaves a gap for k ≥ 3 families.

6.4 Unanimous fairness

Before presenting our results, we note that unanimous-proportionality, like average-proportionality, can
also be defined using family-valuation functions. Define:

Wmin
j (Xj) := min

i∈Fj
Vi(Xj) for j ∈ {1, ..., k}.

4McAvaney et al. (1992); Robertson and Webb (1997, 1998) discuss the computational aspect of this question - how many
intermediate "cut" marks are required (mainly for two agents). But they do not discuss the existential question of how many cuts
are needed in the final division.
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Then, a division is unanimous-proportional if-and-only-if:

∀j : Wmin
j (Xj) ≥ wj

However, in contrast to the functions Wavg defined in Section 6.3, the functions Wmin are in general not
additive. For example, consider a cake with three districts and a family with the following valuations:

C1 C2 C3 C1 ∪ C2 ∪ C3

Alice 1 1 1 3 = 1 + 1 + 1
Bob 0 2 1 3 = 0 + 2 + 1

Charlie 0 1 2 3 = 0 + 1 + 2
Wmin 0 1 1 3 > 0 + 1 + 1

While the individual valuations are additive, Wmin is not additive (it is not even subadditive). Therefore,
the classic cake-cutting results on proportional cake-cutting cannot be used, and different techniques are
needed.

6.4.1 Exact division

Initially, we assume that the entitlements are equal, i.e: wj = 1/k for all j. We relate unanimous-propor-
tionality to a classic cake-cutting problem of finding an exact division:

Definition 6.4.1. Exact(N, K) is the following problem. Given N agents and an integer K, find a division
of the cake to K pieces, such that each of the N agents assigns exactly the same value to all pieces:

∀j = 1, ..., K : ∀i = 1, ..., N : Vi(Xj) = 1/K.

Exact division is a difficult problem, since it requires all agents to agree on the values of all pieces, not
only their own piece. In this section we prove that finding a unanimous-proportional division is similarly
difficult: we show a two-way reduction between the problem of unanimous-proportional division and the
problem of exact division.

Denote by UnanimousProp(n, k) the problem of finding a unanimous-proportional division when there
are n agents grouped in k families with equal entitlements.

6.4.2 UnanimousProp =⇒ Exact

Lemma 6.4.2. For every pair of integers N ≥ 1, K ≥ 1, a solution to UnanimousProp (N(K− 1) + 1, K) implies
a solution to Exact (N, K).

Proof. Given an instance of Exact(N, K) (N agents and a number K of required pieces), create K families.
Each of the first K− 1 families contains N agents with the same valuations as the given N agents. The K-th
family contains a single agent whose valuation is the average of the N given valuations:

V∗ =
1
N

N

∑
i=1

Vi.

The total number of agents in all K families is N(K− 1) + 1. Use UnanimousProp (N(K− 1) + 1, K) to
find a unanimous-proportional division, X. For each agent i in family j: Vi(Xj) ≥ 1/K.

By construction, each of the first K − 1 families has an agent with valuation Vi. Hence, all N agents
value each of the first K− 1 pieces as at least 1/K and:

∀i = 1, ..., N :
K−1

∑
j=1

Vi(Xj) ≥
K− 1

K
.

Hence, by additivity, every agent values the K-th piece as at most 1/K:

∀i = 1, ..., N : Vi(XK) ≤ 1/K.
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The piece XK is given to the agent with value measure V∗, so by proportionality: V∗(XK) ≥ 1/K. By
construction, V∗(XK) is the average of the Vi(XK). Hence:

∀i = 1, ..., N : Vi(XK) = 1/K.

Again by additivity:

∀i = 1, ..., N :
K−1

∑
j=1

Vi(Xj) =
K− 1

K
.

Hence, necessarily:

∀i = 1, ..., N, ∀j = 1, ..., K− 1 : Vi(Xj) = 1/K.

So we have found an exact division and solved Exact(N, K) as required.

Alon (1987) proved that for every N and K, an Exact(N, K) division might require at least N(K− 1) + 1
components. Combining this result with the above lemma implies the following negative result:

Theorem 6.4.3. For every N, K, let n = N(K − 1) + 1. A unanimous-proportional division for n agents in K
families might require at least n components.

This implies that, in particular, unanimous-proportionality with connected pieces is infeasible.

6.4.3 Exact =⇒ UnanimousProp

Lemma 6.4.4. For each n, k, a solution to Exact (n − 1, k) implies a solution to UnanimousProp (n, k) for any
grouping of the n agents to k families.

Proof. Suppose we are given an instance of UnanimousProp(n, k), i.e, n agents in k families. Select n− 1
agents arbitrarily. Use Exact(n− 1, k) to find a partition of the cake to k pieces, such that each of the n− 1
agents values each of these pieces as exactly 1/k. Ask the n-th agent to choose a favorite piece; by the
pigeonhole principle, this value is worth at least 1/k for that agent. Give that piece to the family of the
n-th agent. Give the other k− 1 pieces arbitrarily to the remaining k− 1 families. The resulting division is
unanimous-proportional.

Alon (1987) proved that for every N and K, Exact(N, K) has a solution with at most N(K − 1) + 1
components (at most N(K − 1) cuts). Combining this result with the above lemma implies the following
positive result:

Theorem 6.4.5. Given n agents in k families with equal entitlements, a unanimous-proportional division with
(n− 1) · (k− 1) + 1 components is feasible.

For k = 2 families, the positive result of Theorem 6.4.5 is n, which matches the lower bound of Theorem
6.4.3.

For k > 2 families, the number of components can be made smaller, as explained in the following
subsections.

6.4.4 Less components: equal entitlements

We start with an example. Assume there are k = 4 families. By Theorem 6.4.5, using 3(n − 1) cuts, the
cake can be divided to 4 subsets which are considered equal by all n members. But for a unanimous-
proportional division, it is not required that all members think that all pieces are equal, it is only required
that all members believe that their family’s share is worth at least 1/4. This can be achieved as follows:

• Divide the cake to two subsets which all n agents value as exactly 1/2. This is equivalent to solving
Exact(n, 2), which by Alon (1987), can be done with at most n cuts. Call the two resulting subsets
West and East.

• Assign arbitrary two families to West and the other two families to East. Mark by nW the total number
of members in the families assigned to West and by nE the total number of members assigned to East.
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• Divide the West to two pieces which all nW agents value as exactly 1/4; this can be done with nW
cuts. Give a piece to each family. Divide the East similarly using nE cuts.

The first step requires n cuts and the second step requires nW + nE = n cuts too. Hence the total number of
cuts required is only 2n, rather than 3n− 1.

In fact, two cuts can be saved in each step by excluding two members (from two different families)
from the exact division. These members will not think that the division is equal, but they will be allowed
to choose the favorite piece for their family. Thus only 2(n − 2) cuts are required. A simple inductive
argument shows that whenever k is a power of 2, (log2 k) · (n− k/2) cuts are required.

When k is not a power of 2, a result by Stromquist and Woodall (1985) can be used. They prove that,
for every fraction r ∈ [0, 1], it is possible to cut a piece of cake such that all n agents agree that its value is
exactly r using at most 2n− 2 cuts.5 This can be used as follows:

• Select integers l1, l2 ∈ {1, ..., k− 1} such that l1 + l2 = k.

• Apply Stromquist and Woodall (1985) with r = l1/k: using 2n − 4 cuts, cut a piece X1 that n − 1
agents value as exactly l1/k. This means that these n− 1 agents value the other piece, X2, as exactly
l2/k.

• Let the n-th agent choose a piece for his family; assign the other families arbitrarily such that l1
families are assigned to piece X1 and the other l2 families to piece X2.

• Recursively divide piece X1 to its l1 families and piece X2 to its l2 families.

After a finite number of recursion steps, the number of families assigned to each piece becomes 1 and
the procedure ends. The number of cuts in each level of the recursion is at most (2n − 4). The depth of
recursion can be bounded by dlog2 ke by dividing k to halves (if it is even) or to almost-halves (if it is odd;
i.e. take l1 = (k− 1)/2 and l2 = (k + 1)/2). Hence:

Theorem 6.4.6. Given n agents in k families with equal entitlements, a unanimous-proportional division with
dlog2 ke · (2n− 4) + 1 components is feasible.

Note that Theorem 6.4.5 and Theorem 6.4.6 both give upper bounds on the number of components
required for unanimous-proportionality. The bound of Theorem 6.4.5 is stronger when k is small and the
bound of Theorem 6.4.6 is stronger when k is large.

6.4.5 Less components: different entitlements

When the families have different entitlements, the procedure of the previous subsection cannot be used.
We cannot let the n-th agent select a piece for his family, since the pieces are different. For example, suppose
there are two families with entitlements w1 = 1/3, w2 = 2/3. We can divide the cake to two pieces X1, X2
such that n − 1 agents value X1 as 1/3 and X2 as 2/3. So all of them agree that X1 should be given to
family 1 and X2 should be given to family 2. But, the n-th agent might select the wrong piece for his family.
Therefore, the procedure should be modified as follows.

• Select an integer l ∈ {1, ..., k}.

• Divide the families to two subsets: F1, . . . , Fl and Fl+1, . . . , Fk.

• Apply Stromquist and Woodall (1985) with r = ∑l
j=1 wj: using 2n− 2 cuts, cut a piece X1 which all

n agents value as exactly ∑l
j=1 wj. This means that all n agents value the other piece, X2, as exactly

∑k
j=l+1 wj.

• Recursively divide piece X1 to F1, . . . , Fl and piece X2 to Fl+1, . . . , Fk.

Here, the number of cuts in each level of the recursion is at most (2n− 2). The depth of recursion can be
bounded by dlog2 ke by choosing l = k/2 (if k is even) or l = (k− 1)/2 (if k is odd). Hence:

5They prove that, if the cake is a circle, the number of connected components is n− 1. Hence, the number of cuts is 2n− 2. This
is also true when the cake is an interval, although the number of connected components in this case is n.
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Algorithm 1 Finding a democratic-envy-free division for two families
INPUT:
- A cake, which is assumed to be the unit interval [0, 1].
- n additive agents, all of whom value the cake as 1.
- A grouping of the agents to 2 families, F1, F2.

OUTPUT:
A democratic-envy-free division of the cake to 2 pieces.

ALGORITHM:
- Each agent i = 1, ..., n marks an xi ∈ [0, 1] such that Vi([0, xi]) = Vi([xi, 1]) = 1/2.
- For each family j = 1, 2, find the median of its members’ marks: Mj = mediani∈Fj xi. Find the median of
the family medians: M∗ = (M1 + M2)/2.
- If M1 < M2 then give [0, M∗] to F1 and [M∗, 1] to F2.
Otherwise give [0, M∗] to F2 and [M∗, 1] to F1.

Theorem 6.4.7. Given n agents in k families with different entitlements, a unanimous-proportional division with
dlog2 ke · (2n− 2) + 1 components is feasible.

In concluding the analysis of unanimous-proportionality, recall that, even for k = 2 families, unani-
mous-proportionality is as difficult as exact division and might require the same number of components
- n. In the worst case, we might need to give a disjoint component to each member, which negates the
concept of division to families. Therefore we now turn to the analysis of an alternative fairness criterion
that yields more useful results.

6.5 Democratic fairness

Like unanimous-proportionality (Section 6.4), democratic-proportionality can also be defined using family-
valuation functions. Define:

Wmed
j (Xj) :=

mediani∈Fj Vi(Xj)

nj
for j ∈ {1, ..., k}.

A division is democratic-proportional if-and-only-if:

∀j : Wmed
j (Xj) ≥ wj

However, the Wmed functions are not additive,6 so classic cake-cutting results cannot be used.

6.5.1 Two families: a division procedure

We start with a positive result for two families with equal entitlements, which shows that democratic-
proportionality is substantially easier than unanimous-proportionality.

Theorem 6.5.1. When there are k = 2 families with equal entitlements, democratic-proportionality with connected
pieces is feasible.

Proof. Algorithm 1 finds a democratic-proportional division between two families. For each family, a loca-
tion Mj is calculated such that, if the cake is cut at Mj, half the members value the interval [0, Mj] as at least
1/2 and the other half value the interval [Mj, 1] as at least 1/2. Then, the cake is cut between the two family
medians, and each family receives the piece containing its own median. By construction, at least half the
members in each family value their family’s share as at least 1/2, so the division is democratic-envy-free.
In contrast to the impossibility results of the previous sections, here each family receives a single connected
piece.

6See the example in the beginning of Section 6.4. In that example Wmed is identical to Wmin.
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Unfortunately, this positive result is not applicable when there are more than two families, as shown in
the following subsection.

6.5.2 Three or more families: an impossibility result

Given a specific allocation of cake to families, define a zero agent as an agent who values his family’s share
as 0 and a positive agent as an agent who believes his family received a share with a positive value. Note
that positivity is a much weaker requirement than proportionality.

Lemma 6.5.2. Assume there are n = mk agents, divided into k families with m members in each family. To guarantee
that at least q members in each family are positive, the total number of components may need to be at least:

k · kq−m
k− 1

Proof. Number the families by j = 0, ..., k− 1 and the members in each family by i = 0, ..., m− 1. Assume
that the cake is the interval [0, mk]. In each family j, each member i wants only the following interval:
(ik + j, ik + j + 1). Thus there is no overlap between desired pieces of different members. The table below
illustrates the construction for k = 2, m = 3. The families are {Alice,Bob,Charlie} and {David,Eva,Frankie}:

Alice 1 0 0 0 0 0
Bob 0 0 1 0 0 0

Charlie 0 0 0 0 1 0
David 0 1 0 0 0 0

Eva 0 0 0 1 0 0
Frankie 0 0 0 0 0 1

Suppose the piece Xj (the piece given to family j) is made of l ≥ 1 components. We can make l members
of Fj positive using l intervals of positive length inside their desired areas. However, if q > l, we also have
to make the remaining q− l members positive. For this, we have to extend q− l intervals to length k. Each
such extension totally covers the desired area of one member in each of the other families. Overall, each
family creates q− l zero members in each of the other families. The number of zero members in each family
is thus (k− 1)(q− l). Adding the q members which must be positive in each family, we get the following
necessary condition: (k− 1)(q− l) + q ≤ m. This is equivalent to:

l ≥ kq−m
k− 1

.

The total number of components is k · l, which is at least equal to the expression stated in the Lemma.

In a unanimous-proportional division, all members in each family must be positive. Taking q = m gives
l ≥ m and the number of components is at least km = n, which coincides with the bound of Theorem 6.4.3.
In a democratic-proportional division, at least half the members in each family must be positive. Taking
q = m/2 yields the following negative result:

Theorem 6.5.3. In a democratic-proportional division with n agents grouped into k families, the number of compo-
nents may need to be at least

n · k/2− 1
k− 1

Note that for k = 2 the lower bound is 0, and indeed we already saw that in this case a connected
allocation is feasible.

6.5.3 Three or more families: positive results

Suppose we do want a democratic-proportional division for three or more families. How many compo-
nents are sufficient?
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Algorithm 2 Finding a democratic-proportional division for k ≥ 2 families.
INPUT:
- A cake, which is assumed to be the unit interval [0, 1].
- n additive agents, all of whom value the cake as 1.
- A grouping of the agents to k families, F1, ..., Fk.

OUTPUT:
A democratic-proportional division of the cake to k pieces.

ALGORITHM:
- Each agent i = 1, ..., n selects an xi ∈ [0, 1] such that Vi([0, xi]) =

dk/2e
k (this means 1

2 if k is even and k+1
2k if

k is odd). Note: Vi([xi, 1]) = bk/2c
k .

- For each family j = 1, ..., k, find the median of its members’ selections: Mj = mediani∈Fj xi.
- Order the families in increasing order of their medians. Find the median of the family-medians: M∗ =
Mdk/2e. Cut the cake at x = M∗.
- Define the western families as the Fj with j = 1, ..., dk/2e. Let nW be the total number of members in these
families. Divide the interval [0, M∗] among the western families using UnanimousProp(nW/2, dk/2e).
- Similarly, define the eastern families as the Fj with j = dk/2e + 1, ..., k. There are bk/2c such families.
Let nE be their total number of members. Divide the interval (M∗, 1] among the eastern families using
UnanimousProp(nE/2, bk/2c).

As a first positive result, we can use Theorem 6.4.7, substituting n/2 instead of n: select half of the
members in each family arbitrarily, then find a division which is unanimous-proportional for them while
ignoring all other members. This leads to:

Theorem 6.5.4. Given n agents in k families with different entitlements, democratic-proportionality with dlog2 ke ·
(n− 2) + 1 components is feasible.

However, for families with equal entitlements we can do much better. Algorithm 2 generalizes Algo-
rithm 1: for any number of families.

The algorithm works in two steps.
Step 1: Halving. For each family, a location Mj is calculated such that, if the cake is cut at Mj, half the

family members value the interval [0, Mj] as at least dk/2e
k and the other half value the interval [Mj, 1] as at

least bk/2c
k . Then, the cake is cut in M∗ - the median of the family medians. The dk/2e “western families” -

for which Mj ≤ M∗ - are assigned to the western interval of the cake - [0, M∗]. By construction, at least half

the members in each of the western families value [0, M∗] as at least dk/2e
k . We say that these members are

“happy”. Similarly, the bk/2c eastern families - for which Mj ≥ M∗ - are assigned to the eastern interval
(M∗, 1]; at least half the members in each of these families are “happy”, i.e, value the interval (M∗, 1] as at
least bk/2c

k .
If there are only two families (k = 2), then we are done: there is exactly one western family and one

eastern family (dk/2e = bk/2c = 1 ). For each family j ∈ {1, 2}, at least half the members of each family
value their family’s share as at least 1/2. Hence, the allocation of Xj to family j is democratic-proportional.

If there are more than two families (k > 2), an additional step is required.
Step 2: Sub-division. Each of the two sub-intervals should be further divided to the families assigned

to it. In each family Fj, at least nj/2 members are happy. So for each Fj, select exactly nj/2 members who are
happy. Our goal now is to make sure that these agents remain happy. This can be done using a unanimous-
proportional allocation, where only nj/2 happy members in each family (hence n/2 members overall) are
counted. The unanimous-proportional allocation guarantees that every western-happy-member believes
that his family’s share is worth at least dk/2e

k · 1
dk/2e =

1
k . Similarly, every eastern-happy-member believes

that his family’s share is worth at least bk/2c
k · 1

bk/2c = 1
k . Hence, the resulting division is democratic-

proportional.
We now calculate the number of components in the resulting division. One cut is required for the

halving step. For the unanimous-proportional division of the western interval, the number of required
cuts is at most (dk/2e − 1) · (nW/2− 1) by Theorem 6.4.5, and at most dlog2dk/2ee · (nW − 4) by Theorem
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Proportionality
#Families

(k)
#Connectivity Components

Lower Upper
Average (Sec. 6.3) k k k (connected)

Unanimous 2 n n

(Sec. 6.4) k n
min(1 + dlog2 ke · (2n− 4),

(k− 1) · (n− 1) + 1)
Democratic 2 2 2 (connected)

(Sec. 6.5) k n · k/2−1
k−1

min(2 + dlog2dk/2ee · (n− 8),
2 + (dk/2e − 1) · (n/2− 2))

Table 6.1: Summary of results for dividing a cake among families: upper and lower bounds on number of
cuts

6.4.6. Similarly, for the eastern interval the number of required cuts is at most the minimum of (bk/2c− 1) ·
(nE/2− 1) and dlog2bk/2ce · (nE − 4). The total number of cuts is thus at most 1 + (dk/2e − 1) · (n/2− 2)
and at most 1 + dlog2dk/2ee · (n− 8). The total number of components is larger by one. We obtain:

Theorem 6.5.5. Given n agents in k families with equal entitlements, democratic-proportionality is feasible with at
most

min
(

2 + (dk/2e − 1) · (n/2− 2) , 2 + dlog2dk/2ee · (n− 8)
)

components.

6.6 Conclusions and Future Work

Table 6.1 compares the three fairness criteria studied in the present paper, for families with equal entitle-
ments. Recall that n is the total number of agents in all families.

The case of k = 2 families is well-understood. The results for all fairness criteria are tight: by all
fairness definitions, we know that a fair division exists with the smallest possible number of connectivity
components.

6.6.1 Open questions

The case of k > 2 families opens some questions:

• Is unanimous-proportionality with n components feasible for all k? (particularly, with k = 3 families,
is the number of required components n as in the lower bound, or 2n− 1 as in the upper bound?).

• Is democratic-proportionality with n · k/2−1
k−1 components feasible for all k? (particularly, with k = 3

families, is the number of required components n/4 as in the lower bound, or n/2 as in the upper
bound?).

The case of different entitlements is much less understood even for individual agents. As far as we know,
it is an open question whether cake-cutting among k individuals with 2k − 1 components is feasible for
k > 2. This has direct implications on the number of required components for average-proportionality.

6.6.2 Alternative fairness criteria

One could consider the following alternative fairness criterion: an allocation is individually-proportional if
the allocation X = (X1, . . . , Xk) admits a refinement Y = (Y1, . . . , Yn), where for each family Fj, ∪i∈FjYi =

Xj, such that for each agent i, Vi(Yi) ≥ 1/n. Individually-proportional allocations always exist and can
be found by using any classic proportional cake-cutting procedure on the individual agents, disregarding
their families. The number of components is at most n. Individual-proportionality makes sense if, after the
division of the land among the families, each family intends to further divide its share among its members.
However, often this is not the case. When an inherited land-estate is divided between two families, the
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members of each family intend to live and use their entire share together, rather than dividing it among
them. Therefore, the happiness of each family member depends on the entire value of his family’s share,
rather than on the value of a potential private share he would get in a hypothetic sub-division.

Instead of proportionality, it is possible to use envy-freeness as the basic fairness criterion. Envy-freeness
means that the valuation of each family in its share should be at least as large as the valuation of the family
in another share. Then, average-envy-freeness means that the average value of each family in its allocated
share (averaged over all family members) is at least as large as its average value in each of the other shares;
unanimous-envy-freeness means that every agent values his family’s share at least as much as any other
share; democratic-envy-freeness means that at least half the members in each family believe that their
family received the best share. Note that this definition inherently assumes that the families have equal
entitlements. Section 6.3 (the equal-entitlements case) holds as-is for average-envy-freeness. In Theorems
2 and 3, the recursive-halving procedure cannot be used, and the number of components in the positive
results is O(nk) instead of O(n log k). More details are available in Segal-Halevi and Nitzan (2016).

Finally, the combination of envy-freeness and Pareto-efficiency is very interesting, regardless of geometric
or computational constraints. Among individuals, an envy-free and Pareto-efficient cake-division always
exists (Weller, 1985). Does there always exist an unanimous-envy-free and Pareto-efficient division among
families?

The latter question is open not only in the cake-cutting setting, but also in the classic economic setting
of dividing homogeneous resources.
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Fekete, A., Gál, L., Konečný, Z., Kovács, Z., Lizelfelner, S., Parisse, B., and Sturr, G. (2013). GeoGebra
5.0.
urlhttp://www.geogebra.org.

119



Hüsseinov, F. (2011). A theory of a heterogeneous divisible commodity exchange economy. Journal of
Mathematical Economics, 47(1):54–59.

Hüsseinov, F. and Sagara, N. (2013). Existence of efficient envy-free allocations of a heterogeneous divisible
commodity with nonadditive utilities. Social Choice and Welfare, pages 1–18.

Ichiishi, T. and Idzik, A. (1999). Equitable allocation of divisible goods. Journal of Mathematical Economics,
32(4):389–400.

Iyer, K. and Huhns, M. N. (2009). A Procedure for the Allocation of Two-Dimensional Resources in a
Multiagent System. International Journal of Cooperative Information Systems, 18:1–34.

Johnson, H. G. (1971). Trade and growth : A geometrical exposition. Journal of International Economics,
1(1):83–101.

Kash, I., Procaccia, A. D., and Shah, N. (2013). No agent left behind: dynamic fair division of multiple
resources. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems,
AAMAS ’13, pages 351–358. IFAAMAS.

Katz, M. J. (1997). 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting
amidst convex fat objects. Computational Geometry, 8(6):299–316.

Keil, J. M. (2000). Polygon Decomposition. In Handbook of Computational Geometry, pages 491–518. Univer-
sity of Saskatchewan Saskatoon, Sask., Canada.

Klaus, B. and Klijn, F. (2005). Stable matchings and preferences of couples. Journal of Economic Theory,
121(1):75–106.

Klaus, B. and Klijn, F. (2007). Paths to stability for matching markets with couples. Games and Economic
Behavior, 58(1):154–171.

Kojima, F., Pathak, P. A., and Roth, A. E. (2013). Matching with Couples: Stability and Incentives in Large
Markets*. The Quarterly Journal of Economics, 128(4):1585–1632.

Kurokawa, D., Lai, J. K., and Procaccia, A. D. (2013). How to Cut a Cake Before the Party Ends. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, pages 555–561.

Lalonde, S. N. (2002). Determining boundaries in a conflicted world: the role of Uti Possidetis. McGill-Queen’s
Press-MQUP.

Legut, J., Potters, J. A. M., and Tijs, S. H. (1994). Economies with Land - A Game Theoretical Approach.
Games and Economic Behavior, 6(3):416–430.

Lipton, M. (2009). Land Reform in Developing Countries: Property Rights and Property Wrongs. Routledge.

Maccheroni, F. and Marinacci, M. (2003). How to cut a pizza fairly: Fair division with decreasing marginal
evaluations. Social Choice and Welfare, 20(3):457–465.

MacInnes, M. and Shields, K. (2015). The Land Reform (Scotland) Bill and Human Rights: Key Points and
Recommendations. SSRN Electronic Journal.

Manabe, Y. and Okamoto, T. (2010). Meta-Envy-Free Cake-Cutting Protocols. In Hliněný, P. and Kučera,
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