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Abstract. Global efficiency and individual fairness are two important
considerations in resource allocation. Efficiency aims to improve the sum
of values of all agents (also called the ”utilitarian social welfare”). Fair-
ness aims to ensure that every agent has a value above a certain thresh-
old. These considerations are often conflicting and cannot be satisfied
simultaneously. This raises the question of what compromise can be at-
tained between them. In this paper we study this question in the con-
text of the classic problem of dividing a heterogeneous resource (”cake”)
among several agents with different valuations. We show that, indeed,
a viable compromise exists between the two criteria. It is possible to
attain a constant-factor approximation to the maximum utilitarian wel-
fare, while still guaranteeing a value of 1/O(n) to each agent. Our result
is constructive: it is based on an algorithm taking an existing utilitarian-
optimal cake allocation and modifying it in order to guarantee a sufficient
value to each agent, without much reduction in the utilitarian welfare.
Our algorithm can be interpreted as a procedure for land reform - redi-
viding an already-divided land-estate in order to increase fairness.

1 Introduction

Fair division of land and other resources among agents with different preferences
has been an important issue since Biblical times. Today it is an active area of
research in the interface of computer science [16, 14] and economics [13]. Its
applications range from politics [5, 4] to multi-agent systems [8].

A key challenge in fair division is determining the criteria by which a divi-
sion should be selected. [19] introduced the elementary and most basic fairness
criterion, now termed proportionality : each of the n agents should get a piece
which he values as worth at least 1/n of the value of the entire cake. This crite-
rion corresponds to the Rawlsian principle of justice [15], which says that social
welfare is measured by the welfare of the poorest individual. The proportionality
criterion indeed guarantees that even the poorest individual receives at least his
fair share of 1/n the total value.

In addition to fairness, it is desired that an allocation be economically effi-
cient. A common measure for economic efficiency is the sum of utilities of all



agents. This sum is usually termed the utilitarian social welfare since it corre-
sponds to the utilitarian principle [12], which says that social welfare is measured
by the sum of welfare measures of all individuals.

Proportionality and utilitarianism are often conflicting. This is shown in the
example below, a variant of which appears in several papers [3, 2, 6, 1]:

Example 1. Let k be an integer and n = k2. A land-estate of area n has to be
divided among n agents. The land-estate is divided to k regions, R1, . . . , Rk,
with an area of k per region. There are two groups of agents:

– k regional agents: each agent i in this group wants a specific region Ri. The
utility of agent i is k times the area it receives in region Ri (so the maximum
possible utility per agent is k2 = n).

– n − k dispersed agents: For each agent in this group, the utility equals the
area it receives (so the maximum possible utility is again n).

Note that the utility functions of the agents are normalized such that the max-
imum possible utility is the same for all agents.

The utilitarian-optimal allocation gives the entire region Ri to the regional
agent i; the utilitarian welfare in this case is k3. However, the dispersed agents
receive nothing so the division is not proportional.

Any proportional allocation must give to each dispersed agent an area of
at least 1, so the total area given to the dispersed agents is at least n − k.
This leaves an area of at most k to give to the regional agents. Hence, the
sum of utilities of the rich agents is at most k2 and the total sum is at most
k2 + (n− k) = 2k2 − k. The utilitarian welfare drops, relative to its maximum,
by a factor of k2/(2k − 1) = n/(2

√
n− 1) = Θ(

√
n). ut

In the above example, a utilitarian-optimal allocation gives a value of 0 to the
less fortunate agents, while a proportional allocation causes a loss in utilitarian-
welfare that goes to infinity as the number of agents grows. These pessimistic
results raise the question of whether there is some compromise that attains
reasonable levels of utilitarian welfare and proportionality even when the number
of agents is large. Our first contribution is an affirmative answer to this question.

Theorem 1. [Section 3] For every r ∈ [0, 1] and every number n of agents,
there exists an allocation which simultaneously attains a utilitarian welfare of
1/r the optimum, and guarantees each agent at least (1− r)/n of its total value.

As an example, there exists a half-proportional allocation (giving each agent at
least 1/(2n) its total cake value) that attains a utilitarian welfare of at least 1/2
the optimum.

This result is encouraging. However, its disadvantage is that the protocol ap-
plied to attain this division gives each agent a large number of disconnected
pieces (the number of pieces is n times the denominator of r, so the half-
proportional allocation gives each agent 2n disconnected pieces). Is it possible
to attain a similar result when the pieces must be connected?

Here our answer is negative - a constant-factor approximation to utilitarian
welfare is impossible if we want to guarantee positive value to all agents:



Theorem 2. [Section 4] For every number n of agents, there exist agent valua-
tions such that, in every connected allocation that gives a positive value to each

agent, the utilitarian welfare is at most Θ(
√

lg lgn
lgn ) of the optimum.

In light of this impossibility, the next question is: what reduction in the
utilitarian welfare is sufficient for guaranteeing a positive value to all agents?
Our next theorem provides an upper bound:

Theorem 3. [Section 5] For every number n of agents, there exists an allocation
which simultaneously approximates the optimal utilitarian welfare to a factor
1/O(log n) and guarantees each agent a positive value.

The positive-value guarantee is arguably quite weak (but in light of Theorem 2,
it is far from trivial). We view it as a first step towards future results, which
(hopefully) will guarantee each agent a constant-factor approximation to 1/n
with logarithmic loss in utilitarian welfare.

1.1 Model

A cake C is a Borel subset of some Euclidean plane Rd. In this paper we focus
on cakes that are intervals (d = 1).

C has to be divided among n ≥ 1 agents. Each agent i ∈ {1, . . . , n} has
a value-density function vi, which is an integrable, non-negative and bounded
function on C. The value of a piece X to agent i is marked by Vi(X) and it is
the integral of its value-density:

Vi(X) =

∫
x∈X

vi(x)dx

The Vi are measures and are absolutely continuous with respect to the Lebesgue
measure, i.e., any piece with zero length has zero value to all agents. Therefore,
we do not need to worry about who gets the end-points of a piece.

Unless otherwise stated, the agents’ valuations are normalized such that for
each agent, the value of the entire cake is 1.

The agents’ valuations are their private information. A division protocol ac-
cesses the agents’ valuations via queries. Standard cake-cutting protocols use
two types of queries [16]: an eval query asks an agent to reveal its value for
a specified piece of cake; a mark query asks an agent to mark a piece of cake
with a specified value. As usual in the cake-cutting literature since [19], the fair-
ness guarantees of our division protocols are valid for every agent answering the
queries truthfully, regardless of the behavior of the other agents.

An allocation is a vector of n pieces, X = (X1, . . . , Xn), one piece per agent,
such that the Xi are pairwise-disjoint and ∪ni=1Xi ⊆ C. Note that some cake
may remain unallocated, i.e, free disposal is assumed.

An allocation is called connected if for all i, each Xi is connected (in the one
dimensional case, this means that all pieces are intervals).



An allocation is assessed by its social welfare. The social welfare of an allo-
cation is a certain aggregate function of the normalized values of the agents (the
normalized value is the piece value divided by the total cake value). In this paper
we focus on two common social welfare functions: egalitarian and utilitarian [13].
We normalize them such that the maximum welfare is 1:

– Egalitarian welfare - the minimum of the agents’ normalized values:

Wegal(X) = min
i∈{1,...,n}

Vi(Xi)

Vi(C)

– Utilitarian welfare - the arithmetic mean of the agents’ normalized values:

Wutil(X) =
1

n

∑
i∈{1,...,n}

Vi(Xi)

Vi(C)

A cake-allocation is called utilitarian if it maximizes the utilitarian welfare.
Given a fraction r ∈ [0, 1], a cake-allocation is called r-utilitarian if its utilitarian
welfare is at least r times the maximum.

Egalitarian welfare is related to the proportionality criterion: a proportional
allocation is an allocation with an egalitarian welfare of at least 1/n - every
agent receives at least 1/n of the total cake value:

∀i ∈ {1, . . . , n} : Vi(Xi) ≥
Vi(C)

n

Given a fraction r ∈ [0, 1], we call an allocation r-proportional if its egalitarian
welfare is at least r/n. We call an allocation partially-proportional if it is r-
proportional for some positive r independent of n.

A positive allocation is an allocation with a positive egalitarian welfare -
every agent receives a piece with a strictly positive value.

Given a social welfare function W and a fairness criterion F , the price-of-
fairness relative to W and F (also called: ”the W -price-of-F”) is the ratio:

maxX W (X)

maxY ∈F W (Y )
(*)

where the maximum at the nominator is over all allocations X and the maximum
at the denominator is over all allocations Y that also satisfy the fairness crite-
rion F . We are mainly interested here in the utilitarian-price-of-proportionality,
utilitarian-price-of-partial-proportionality and the utilitarian-price-of-positivity.

When there are geometric constraints, such as connectivity, both maxima
are taken only on allocations that satisfy these constraints. The price-of-fairness
may be either higher or lower than with arbitrary pieces, so both upper bounds
and lower bounds have to be re-calculated.



2 Related Work

2.1 Price of fairness

The trade-off between fairness and efficiency has been studied in various contexts,
from allocation of computer network resources to allocation of landing-times to
airplanes. Bertsimas et al [3] present several such problems and prove two generic
bounds on two prices-of-fairness:

– The utilitarian-price-of-proportional-fairness is Θ(
√
n) and this is tight. By

”proportional fairness” they refer to a generalization of the Nash bargaining
solution from two to n players. In the context of cake-cutting, a ”propor-
tionally fair” allocation is also proportional to the usual sense (each agent
receives at least 1/n).

– The utilitarian-price-of-max-min-fairness is Θ(n) and this is tight. By ”max-
min fairness” they refer to maximizing the egalitarian welfare.

Their bounds are valid whenever the space of utility vectors of all feasible allo-
cations is compact and convex. By the Dubins-Spanier theorems [9], the space
of utility vectors in cake-cutting with arbitrary (disconnected) pieces is indeed
compact and convex. Hence, the bounds of [3] are valid in this case, too.

Caragiannis et al [6] study several different fair-allocation settings. In the
cake-cutting setting, they prove the same bounds as [3] in different ways. In
addition, they study fair allocation of indivisible items, as well as divisible and
indivisible chores (when each agent wants to receive as little as possible).

Aumann et al [2] study the price-of-fairness in cake-cutting with connected
pieces. In this setting, the space of utility vectors is not convex so the generic
bounds of [3] do not apply. They prove, among other results, that the utilitarian
price of proportionality is still Θ(

√
n), as in the disconnected case. They also

consider the efficiency-fairness trade-off from the other direction, and show that
the proportional-price-of-utilitarianism might be infinite.

Zivan [20] studies a compromise between efficiency and fairness in the context
of cake-cutting between two agents with disconnected pieces. He shows that it
is possible to give both agents at least (1 − l)/2 of their total cake value in an
allocation which he calls ”l-trust-efficient”.

Finally, Arzi [1] shows that partially-proportional cake allocations can be
much more efficient than proportional ones. In particular, she shows that in
some cases, an (1− ε)-proportional allocation, for any ε > 0, can have a utilitar-
ian welfare Θ(

√
n) times greater than the maximum possible in a proportional

allocation.

2.2 Partial proportionality

While proportionality is the most common criterion of fairness in cake-cutting,
it is often relaxed to partial-proportionality in order to achieve additional goals
besides improving the utilitarian welfare, such as:



1. Speed. Finding a proportional division takes Θ(n log n) queries, but finding
a (1/T )-proportional division takes only Θ(n) queries, for some sufficiently
large T ≥ 10 [10, 11].

2. Guaranteeing a minimum-size constraint. [7] prove that it is impossible to
guarantee a (1/T )-proportional allocation for any finite T , and provide ad-
ditive approximation algorithms.

3. Satisfying geometric constraints like square pieces [18, 17]. For example,
when the cake is square and the pieces must be square, it is impossible
to guarantee a (1/T )-proportional allocation for any T ≤ 2, but there is an
algorithm that guarantees a 1/4-proportional allocation.

3 Disconnected Pieces

In this section we assume that the agents may receive arbitrary disconnected
pieces. Our main lemma is:

Lemma 1. Given cake-allocations X and Y and a constant r ∈ [0, 1], there
exists an allocation Z such that, for every agent i:

Vi(Zi) ≥ rVi(Yi) + (1− r)Vi(Xi)

Proof. The Dubins-Spanier convexity theorem [9] says that the space of utilities
of cake-allocations is convex. Hence, there exists an allocation Z such that ∀i :
Vi(Zi) = rVi(Yi) + (1− r)Vi(Xi).

Since the Dubins-Spanier theorem is not constructive, we give here a con-
structive protocol for creating the allocation Z when the ratio r is a rational
number. Suppose r = p/q, where p, q are positive integers and p < q. For every
pair of agents i, j, the protocol works as follows:

– Agent i divides the piece Xi ∩ Yj to q pieces that are equal in its eyes.
– Agent j takes the p pieces that are best in its eyes.
– Agent i takes the remaining q − p pieces.

Note that each for agent i, Zi contains Xi ∩ Yi. All in all, Zi contains nq pieces:
np pieces that agent i took from other agents (including itself) in piece Yi and
n(q − p) pieces that were left for agent i from other agents in piece Xi.

From every piece Yi ∩ Xj (for j ∈ {1, . . . , n}), agent i picks the best p out
of q pieces, which give it a value of at least p

qVi(Yi ∩Xj). Hence, its total value

from these np pieces is at least rVi(Yi).
In addition, from every piece Xi ∩ Yj (for j ∈ {1, . . . , n}), agent i receives

q−p out of q equal pieces, which give it a value of exactly q−p
q Vi(Xi∩Yj). Hence,

its total value from these n(q − p) pieces is exactly (1− r)Vi(Xi). ut

In the above proof, the utilitarian/egalitarian welfare of the allocation Z is
at least r times the utilitarian/egalitarian welfare of Y and at least 1− r times
the utilitarian/egalitarian welfare of X. Suppose Y is a utilitarian allocation
and X is a proportional allocation. Then, Z is simultaneously r-utilitarian and
(1− r)-proportional. Hence our Theorem 1 is proved and we get:



Corollary 1. For every r ∈ [0, 1], the utilitarian price of (1− r)-proportionality
is at most 1/r.

Figure 1 represents the tradeoff proved by Corollary 1. This is an upper bound
on the tradeoff, i.e, in specific cases it may be possible to attain a smaller price-
of-fairness. As expected, the curve approaches 1 at infinity, since the utilitarian
price of proportionality is not bounded by any constant; Example 1 shows that
it goes to infinity with the number of agents. The proportionality price of full
utilitarianism is similarly unbounded. However, the curve shows that there are
many options besides full utilitarianism and full proportionality. For example,
the point (2,2), representing a 1/2-proportional 1/2-utilitarian allocation, seems
a reasonable compromise.

Fig. 1. A curve showing an upper bound on tradeoff between proportionality and
utilitarian welfare. The height of the curve at x = T is the utilitarian price of (1/T)-
proportionality.

4 Connected Pieces - Negative Result

In this section we assume that each agent can derive utility only from a single
connected interval. Since the protocol of Lemma 1 may give each agent as many
as nq disjoint pieces (where q is the denominator of the parameter r), it cannot
be used here. Moreover, Dubins-Spanier Convexity theorem (and Lemma 1) are
no longer true - the space of utilities of cake-allocations is no longer convex. This
is a corollary of the following counter-lemma:

Lemma 2. Let X be a connected allocation. Then there exist n agents such that,
in every positive connected allocation Z, for some agent i, Vi(Zi) ≤ Vi(Xi)/n.



This lemma implies that there is no partially-proportional allocation in which
all agents keep a constant fraction of the utility they had in X.

Before proving Lemma 2 we introduce some terminology.

Definition 1. Given an agent i, an interval Xi and an integer l, we say that
i has an l-fractioned value-density in Xi if there exists a set of l disjoint
sub-intervals of Xi, the first and last of which touch the two endpoints of Xi,
such that:

– Agent i values each interval as exactly Vi(Xi)/l;
– The value-density of i is zero in the l − 1 ”holes” between the intervals.

The following illustration shows an l-fractioned value-density function on the
interval Xi = [0, 9], where l = 5:

Note 1. If agent i has an l-fractioned value-density in Xi, and Vi(Zi) > Vi(Xi)/l,
then Zi entirely contains one of the l − 1 holes.

Proof (of Lemma 2). Without loss of generality we take i = n and recall that
Xn (an interval) is the share of agent n in the fixed allocation X. Suppose agent
n has an n-fractioned value-density in Xn. Moreover, suppose the valuations of
the other agents are such that each agent j ∈ {1, . . . , n − 1} has all its value
concentrated in the j-th ”hole” in Xn. By Note 1, if agent n receives value more
than Vn(Xn)/n, then one of the other agents receives value 0. Hence, in any
positive allocation Z, agent n must receive at most Vn(Xn)/n. ut

In contrast to the disconnected case, here we cannot always convert an allocation
X to a partially-proportional allocation in which each agent receives at least a
constant fraction of its utility in X.

Note that the allocation used in the proof of Lemma 2 is not utilitarian-
optimal. In particular, instead of giving Xn to agent n and getting a utilitarian
welfare of 1, we can divide it among the other n− 1 agents and get a utilitarian
welfare of n− 1. Below we show a more complicated construction that gives an
analogous result for utilitarian-optimal allocations.

Lemma 3. Let X be a utilitarian connected allocation. There exists a cake-
cutting instance in which, in every positive connected allocation Z, for some
agent i, Vi(Zi) ≤ Vi(Xi) ·Θ(lg lg n/ lg n).

Proof. Let k be an integer such that n > k + kk. Let m = k − 1 (This implies
k,m ∈ Θ(lg / lg n lg n)). Consider the following cake-cutting instance.

(1) There are k rich agents. For each rich agent i, Vi(Xi) = Vi(C) = 1, i.e,
all its value-density is concentrated in Xi (its share in allocation X). Its value



density there is m-fractioned (so that each fraction is worth 1/m). Note that in
each region Xi there are m− 1 ”holes” in which the value-density of i is 0. The
total number of holes is k(m− 1).

(2) There are (m−1)k poor agents. Each poor agents has all its value-density
scattered among k holes (so that each hole is worth 1/k). The value-density of
a poor agent is uniform within each hole. Note that for each hole there may be
several poor agents who want that hole.

We now prove that X is utilitarian. Since m < k, 1/m > 1/k. Giving a hole
to one or more poor agents gives these agents a total utility of at most 1/k, but
subtracts at least 1/m from a rich agent. Hence, in a utilitarian allocation, poor
agents receive nothing.

Let Z be a positive allocation. Our goal is to prove that in Z, at least one rich
agent receives a value of at most 1/m. Suppose as contradiction that each rich
agent receives more than 1/m. Then, by Note 1, in each region at least one hole
is covered. All in all, k holes are covered. The number of holes in each region is
m− 1, so the number of subsets of k holes is (m− 1)k, which equals the number
of poor agents. Assume that each poor agent wants a different subset of k holes.
Then, at least one poor agent remains with no value. Hence, if Z is positive then
some rich agent receives a value of at most 1/m, which is Vi(Xi) ·Θ(lg lg n/ lg n).

ut

We use a similar construction to prove a lower bound on the utilitarian price
of giving each agent a positive value.

Lemma 4. The price of positivity may be as high as Θ(
√

lgn
lg lgn ).

Proof. Let k be an integer such that n > k+
(
k(m−1)

k

)
. Let m =

√
k (this implies

m ∈ Θ(
√

lg n/ lg lg n)). Consider the following cake-cutting instance.
There are k regions and k rich agents, each of whom has an m-fractioned

value-density in its region.
There are

(
k(m−1)

k

)
poor agents, each of whom has its value-density scattered

among k holes.
Consider now any positive allocation Z. Our goal is to prove that in Z, the

utilitarian welfare is at most O(1/
√
k) of the optimum. Suppose as contradiction

that all rich agents together receive a value of more than (2k−1)/m. This means
that they receive 2k− 1 fractions in k regions, so in all regions together at least
k holes are covered. The total number of holes is k(m− 1) and the total number

of different hole subsets is
(
k(m−1)

k

)
which is the number of poor agents. If each

poor agent wants a different subset of k holes, then at least one poor agent
remains with no value. Since Z is positive, the sum of utilities of all rich agents
in Z must be at most (2k − 1)/m.

Moreover, the sum of utilities of all poor agents in each hole is 1/k, in each
region - less than m/k, and overall - less than m. Hence, the total utilitarian
welfare in a partially-proportional division is less than m+ (2k− 1)/m. But the
utilitarian welfare in the utilitarian allocation X is k (each rich agent receives



1). Hence, the utilitarian-welfare approximation ratio is at most:

m+ (2k − 1)/m

k
<
m2 + 2k

mk
=
m

k
+

2

m
= Θ(1/

√
k) = Θ(

√
lg lg n/ lg n)

as claimed. ut

Lemma 4 also proves our Theorem 2.

5 Connected Pieces - Positive Result

We start with a positive counterpart of Lemma 3.

Lemma 5. Given a connected utilitarian allocation X to n agents, there exists
a connected allocation Z such that, for every agent i, the following guarantees
hold simultaneously:

Vi(Zi) ≥ Vi(Xi)/O(log n)

Vi(Zi) > 0

Proof. Let m = dlog2 ne+ 1. Divide the agents to two groups:

– Rich agents - whose value in X is positive;
– Poor agents - whose value in X is zero.

Let k be the number of rich agents; number them 1, . . . , k.
Ask every rich agent i ∈ {1, . . . , k} to divide its plot Xi to m intervals with

equal value. This results in mk intervals. The value of each interval in Xi for
agent i is Vi(Xi)/m, which is at most 1/m.

For each rich agent i, define the extreme intervals as the leftmost and the
rightmost interval in Xi. the total number of extreme intervals is 2k. The value
of each extreme interval to its owner is at most 1/m. Because X is utilitarian,
the value of each extreme interval to any other agent j is at most 1/m+Vj(Xj)
- otherwise we could improve the utilitarian welfare by taking this interval from
i and giving it to j. In particular, any poor agent values any extreme interval as
at most 1/m.

We want to create an allocation Z in which each rich agent receives one of
its two extreme intervals; this will guarantee each rich agent a value of at least
Vi(Xi)/m. The total number of such selections is 2k. Out of these selections, we
would like to select one in which the remainder has a positive value for each
poor agent. We call such a selection ”good”. Conversely, a selection in which
the remainder has zero value for some poor agent is called ”bad”. Our goal is to
prove that there is at least one good selection.

There are several easy cases:
Easy case #1: k ≤ m − 1. Then, in any selection of extreme-interval-per-

rich-agent, the total value that is made unavailable to the zero agents is at most
k · (1/m) ≤ 1 − 1/m, so the remaining cake (after the allocation to the rich
agents) has a value of at least 1/m to each zero agent. All selections are good.



Easy case #2: for some poor agent j and some rich agent i, both extreme
intervals in Xi have positive Vj . Then, in any selection of extreme-interval-per-
rich-agent, the remainder will have positive Vj .

Easy case #3: for some poor agent j and some rich agent i, the part of Xi

not contained in the extreme intervals have positive Vj . Then, in any selection
of extreme-interval-per-rich-agent, the remainder will have positive Vj .

Therefore, from now on we assume that none of these easy cases happen.
That is, we assume: (1) k ≥ m, (2) for each poor agent j and rich agent i, one
extreme-interval of Xi has Vj = 0, and the other one has Vj ≤ 1/m.

Consider some poor agent j, and let l be the number of extreme-intervals in
which Vj is positive. By the previous paragraph, m ≤ l ≤ k. The total number
of ways to select an extreme interval per rich agent is 2k. Out of these, the total
number of selections in which all of j’s positive intervals are taken, is at most
2k−l ≤ 2k−m. The total number of poor agents is at most n. By the union bound,
the total number of selections in which all positive intervals of some poor agent
are taken (we called such selections ”bad”), is at most n · 2k−m = 2k · (n/2m).
By definition of m, n < 2m, hence the total number of bad selections is less than
2k, hence there exists at least one good selection.

The number of steps required to find a good selection is exponential in k,
but this is not relevant since we are only interested in existence result. After
implementing a good selection, the remainder contains at most k + 1 intervals
and it has a positive value for each poor agent. It can be divided among the
poor agents using any algorithm for dividing multiple cakes, e.g. the ”archipelago
division algorithm” [18]. In the resulting division, each agent has value at least
Vi(Xi)/m and all agents have positive value.

Corollary 2. The utilitarian price of positivity is at most 1/O(log n).

This also proves our Theorem 3.

5.1 Future Work

We presented a quite complete efficiency-fairness tradeoff curve for cake-cutting
with disconnected pieces. The main challenge for future work is to complete the
efficiency-fairness tradeoff curve for cake-cutting with connected pieces. In par-
ticular, it is interesting to know what reduction in utilitarian welfare is sufficient
for guaranteeing: (1) a positive value for each agent, (2) a constant fraction of
1/n for each agent?

An additional possible generalization is to allow each agent to receive a con-
stant number of intervals. This seems like a fair compromise between arbitrarily-
many intervals and a single interval. As far as I know, it has not been studied.
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