"DT\}TDE కME ZAND EQTGLZ\}" (Ezekiel 47:14)

Fair Division among Families Erel Segal-Halevi

Based on joint works with:

- Shmuel Nitzan - Bar Ilan University
- Warut Suksompong - Oxford University
- Sophie Bade - Royal Holloway University of London

Individual vs. Family Goods

Different preferences; Different shares;
Each agent should believe his share is "good enough".

Different preferences;
Same share;
Each agent should
believe his family's
share is "good enough".
Erel Segal-Halevi

Social Choice Theory

Voting theory: all agents are affected by group decision.

Fair division: each agent has a personal share.

Fair Division Settings

Resource type Example Challenge
2. Homogeneous, fruits, divisible resources electricitygo
(mewels, "ㅃ․ "in houses

Fair and connected.
3. Indivisible goods

Fair and Pareto-optimal.
"Almost" fair.

Fairness in an economy of individuals:

-Envy-free (EF): each individal's utility in his share $\quad \geq$ his utility in any other share.

- Proportional (PR): each individal's utility in his share is $\quad \geq$ (cake utility) / (\# individuals).

Theorem (Stromquist, 1980):

- For any number of individuals, there exists a connected + EF + PR allocation.

Fairness in an economy of families:

-Envy-free (EF): each individal's utility in his family's share \geq utility in another family's share.

- Proportional (PR): each individal's utility in his family's share \geq (cake utility) / (\# families).

Theorem (with Shmuel Nitzan):

- There might be no allocation that is both connected and EF and/or PR.

Theorem 1-: There are instances with 2 families where no connected allocation is EF/PR.

Proof: There are a couple and a single. Each individual wants a distinct segment of the cake:

In any connected division, at least one individual gets a utility of 0 .

2. Homog. div. - individuals

Fairness in an economy of individuals:

-Envy-free (EF): each individal prefers his share to the shares of all other agents.

- Fair-share guarantee (FS): each individal prefers his share to an equal split of resources. Theorem (Varian, 1974):
- If all preferences are monotone and convex, then PO+EF+FS are compatible.

2. Homog. div. - families

Fairness in an economy of families:

-Envy-free (EF): each individal prefers his family's share to shares of all other families.

- Fair-share guarantee (FS): each individal prefers his family's share to the equal split. Theorem (with Sophie Bade):
-PO+EF - incompatile for 3 or more families; compatible for 2 families.
-PO+FS - always compatible.

2. Homog. div. - families

Theorem 2-: With 3

 families, a PO+EF division might not exist. s Proof: 3 families:- 1 couple, 2 singles. - Cobb-Douglas prefs. -EF \rightarrow each single must consume same bundle as family.
- Singles consume same bundle \rightarrow not PO.

2. Homog. div. - families

Theorem 2+: If individuals' preferences are represented by continuous utility functions, then a Pareto-optimal fair-share allocation exists.

Proof: Let F := set of all FS allocations.
$X:=\mathrm{FS}$ allocation that maximizes sum of utilities
$-X$ exists by continuity and compactness of F .

- X is FS since it is in F .
- X is PO since a Pareto-improvement of X would also be in F , contradicing the maximality of X.

2. Homog

Theorem 2++: If there are 2 families, and agents‘ preferences are continuous \& convex, then a Pareto-optimal envy-free allocation exists.

Proof: Let X be a PO+FS allocation.

- X exists by previous theorem.
- X is EF. Suppose member i of family 1 envied family 2 . Then i would prefer (Endowment $-X_{l}$) over X_{I}. By convexity, i would prefer Endowment $/ 2$ to $X_{1} \rightarrow X$ were not FS.

Fairness in an economy of individuals:

-Envy-free-except-c (EFc): each individual weakly prefers his share to any other share when some c goods are removed from it.
-1-of-c maximin-share (MMS): each individual weakly prefers his share to dividing the goods into c piles and getting the worst pile.

Theorem (Budish, 2011): for n individuals, an
EF1 and 1-out-of-($n+1$)-MMS allocation exists.

3. Indivisible - families

Fairness in an economy of families:

-Envy-free-except-c (EFc): each individual weakly prefers his family's share to any other share when some c goods are removed from it.
-1-of-c maximin-share (MMS): each individual weakly prefers his family's share to dividing the goods to c piles and getting the worst pile.
Theorem (with Warut Suksompong): for any finite integer c, even with 2 families, there might be no allocation that is EFc and/or 1-of-c-MMS.

Theorem 3-: for any finite integer c, there are instances with 2 families, with binary additive valuations, where no allocation is EFc and/or 1of $-c$-MMS.

Proof: There are $2^{*} c$ goods. For each distinct subset of c goods, each family has a member who assigns utility 1 to exactly these c goods and utility 0 to the other c goods.
In any allocation, at least one individual has utility 0 , so for him, it is not EFc nor 1-of-c-MMS.

Interim Summary

Resource Challenge Individuals Families

1. Het $\because \because \circ$
$+D i v$
EF+CON
PR+CON Yes
No for 2+ families No for 2+ families
$\begin{array}{ll}\text { 2. Hom } & \text { EF+PO } \\ \text { +Div } & \text { FS+PO }\end{array}$
Yes
Yes

No for 3+ families Yes

3. Indiv
EF $c \quad$ Yes $(c=1)$ $\begin{array}{ccc}\text { EF } c & \text { Yes } \\ (c=1) \\ (c=n+1)\end{array} \quad$ No for 2+ families

Unanimous fairness is too much to ask for.

Democratic Fairness

"Democracy is the worst form of government.
...except all the others that have been tried."
(Winston Churchil)

Definition: h-democratic fairness $(h \in[0,1]):=$ fairness in the eyes of at least a fraction h of the agents in each family.

- We saw: 1-democratic fairness is impossible.
-For what h is h-democratic fairness possible?

Theorem 1+: For every integer k, for every k families, there exists a connected 1/k-democratic EF+PR division.

Proof: Run an existing protocol for finding a connected EF+PR division (Su, 1999).

- Whenever a family has to choose the best of k pieces, let it choose using plurality voting.
- At least $1 / k$ members of each family are happy with the family's choice.

Theorem 1+: For every integer k, for every k families, there is a connected $1 / k$-democratic EF+PR division.

Corollary: For every 2 families, we can find a connected allocation that will win a (weak) majority in a referendum.

Questions:

- Can we get a support larger than $1 / 2$?
- Can we get a support of $1 / 2$ with 3 families?

Theorem 1-: For every integer k, there are instances with k families where no connected allocation is more than $1 / k$-democratic EF/PR.

Proof: A family with k members, and k - 1 singles. Each individual wants distinct segment:

In any connected division, if two or more members of the family receive non-zero utility, then one single receives zero utility.

Theorem 1-: For every integer k, there are instances with k families where no connected allocation is more than $1 / k$-democratic EF/PR.

- With 2 families: cannot guarantee the support of more than $1 / 2$.
- With 3 or more families: cannot guarantee even a weak majority. Possible solution: compromise on the connectivity requirement.

1. Heter. div. - democratic

Example theorems (proofs in paper):

- For 2 families with n individuals in total: There is a 1-democratic EF+PR division with n connected-components; There might be no 1-democratic EF+PR division with less than n components.
- For 3 families with n individuals in total: There is a $1 / 2$-democratic EF+PR division with $\boldsymbol{n} / \mathbf{2 + 2}$ connected-components; There might be no 1/2-democratic EF+PR division with less than $n / 4$ components.

Open questions:

- [Combinatorial] How many components we need for 3 families (between $n / 4$ and $n / 2+2$)? * Useful for small families only.
- [Geometric] Can we have a connected fair division of a 2-dimensional resource?

2. Homog. div. - democratic

Theorem 2-: With $2 k-1$

 families, There might be no PO allocation that is $E F$ for more than $1 / k$ the members in each group. -Proof: $2 k$-2 singles + family with k members.- Example for $k=3$
- If at least two members of the family are EF -
 the allocation is not PO.

2. Homog. div. - democratic

Open question: with 3 or 4 families, is there always a PO allocation that is EF for at least $\mathbf{1 / 2}$ the members in each family?

In other words: can we find a PO allocation that will win a (weak) majority in a referendum?

Theorem 3+: For every integer k and k families, there is a $1 / k$-democratic "EF-2" allocation.

Proof idea:

- Put all goods on a line.
- Treat the line as a cake.

- Find a connected $1 / k$-democratic EF division.
- "Slide" the cuts to be between the goods. * This creates less than 2 "envy units".

3. Indivisible - democratic

Theorem 3++: For $k=2$ families, there is a $1 / 2-$ democratic EF1 allocation.

Proof: EF1: same as Theorem 3+, but now the cut-sliding creates only 1 "envy unit".

Corollary: For 2 families, there is an allocation that may win a (weak) majority in a referendum.

- Can we get a support larger than $1 / 2$?
- Can we get a support of $1 / 2$ with 3 families?

3. Indivisible - democratic

Theorem 3-: For every integer k, there are instances with k families with binary additive valuations, where no allocation is more than 1/k-democratic EF1 (proof in paper).

- With 2 families: cannot guarantee the support of more than $1 / 2$.
- With 3 or more families: cannot guarantee even a weak majority.
Possible solution: compromise on the fairness requirement.

Theorem 3++: For every integer $c \geq 1$, for 2 families, when all agents have binary additive valuations, there exists a ($1-1 / 2^{c \cdot 1}$)-democratic 1-out-of-c MMS allocation. Examples:

- 1/2-democratic 1-out-of-2 MMS;
- 3/4-democratic 1-out-of-3 MMS;
- 7/8-democratic 1-out-of-4 MMS;

3. Indivisible - democratic

Proof idea: Round-robin protocol with approval voting.

- Each family in turn picks a good. To decide what to pick, the family uses weighted approval voting.
- Each family member is assigned a potential based on his number of remaining wanted goods, and the number of goods he should receive for the fairness.
- The potential of a "winning" agent increases; the potential of a "losing" agent decreases.
- The voting weight of an agent is his potentialdecrease in case he loses.

3. Indivisible - democratic

Potential table for round-robin protocol: (boldface cells correspond to 1-of-3-MMS)

$r \downarrow s \rightarrow$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	0	0	0
$\mathbf{2}$	$\mathbf{1}$	0.5	0	0	0	0	0	0	0	0
$\mathbf{3}$	1	$\mathbf{0 . 7 5}$	0	0	0	0	0	0	0	0
$\mathbf{4}$	1	$\mathbf{0 . 8 7 5}$	0.375	0	0	0	0	0	0	0
$\mathbf{5}$	1	$\mathbf{0 . 9 3 8}$	0.625	0	0	0	0	0	0	0
$\mathbf{6}$	1	0.969	$\mathbf{0 . 7 8 2}$	0.313	0	0	0	0	0	0
$\mathbf{7}$	1	0.985	$\mathbf{0 . 8 7 6}$	0.548	0	0	0	0	0	0
$\mathbf{8}$	1	0.993	$\mathbf{0 . 9 3 1}$	0.712	0.274	0	0	0	0	0
$\mathbf{9}$	1	0.997	0.962	$\mathbf{0 . 8 2 2}$	0.493	0	0	0	0	0
$\mathbf{1 0}$	1	0.999	0.98	$\mathbf{0 . 8 9 2}$	0.658	0.247	0	0	0	0
$\mathbf{1 1}$	1	1	0.99	$\mathbf{0 . 9 3 6}$	0.775	0.453	0	0	0	0

3. Indivisible - democratic

Proof idea (cont.):

- Potentials are calculated such that, for each agent: the potential increase in case he loses \geq the potential decrease in case he loses
- Hence, the total family potential always increases.
- At the end, the potential is:

1 for an agent who feels the division is fair;
0 for an agent who feels it is unfair.

- The fraction of happy agents is at least the smallest initial potential of an agent, which is $\left(1-1 / 2^{c-1}\right)$.

Summary

Resource Challenge
 h-democratic

1. Het +Div

EF+CON
 PR+CON

k families: $h=1 / k$.
k families: $h=1 / k$.

2. Hom EF+PO +Div
 FS+PO

$2 k$-1 families: $\quad h \leq 1 / k$.
k families: $\quad h=1$.
3. Indiv

EF2 / EF1
k families: $h=1 / k$.
1-of-c-MMS
2 binary families: $1-1 / 2^{c-1}$

Conclusion

When dividing goods among families:

- Unanimous fairness is usually impossible.
-1/2-democratic fairness is often possible for the common case of $\mathbf{2}$ families.

Main open questions for $\mathbf{3}$ families:
-Het+div: \#components for envy-free?
-Hom+div: PO 1/2-democratic envy-free?

- Indiv:

1/2-democratic 1-of-c-MMS?
Thank you!

