
Fair Division
among Families

(Ezekiel 47:14)

Erel Segal-Halevi

Based on joint works with:
● Shmuel Nitzan – Bar Ilan University
● Warut Suksompong – Oxford University
● Sophie Bade – Royal Holloway University of London



Fair Division among Families                         Erel Segal-Halevi 2

Individual vs. Family Goods

Different preferences;
Same share;
Each agent should 
believe his family‘s 
share is “good enough“.

Different preferences;
Different shares;
Each agent should 
believe his share is 
“good enough“.
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Social Choice Theory

Voting theory:
all agents 

are affected
by group decision.

Fair division:
each agent 

has a 
personal share.

Fair division among families
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Fair Division Settings

Resource type Example Challenge

1. Heterogeneous, 
divisible resource

cake, 
land

Fair and 
connected.

2. Homogeneous, 
divisible resources

fruits, 
electricity

Fair and
Pareto-optimal.

3. Indivisible 
goods

jewels,  
houses

“Almost“ fair.
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1. Heter. div. – Individuals
Fairness in an economy of individuals:

● Envy-free (EF): each individal‘s utility in his 
share           ≥   his utility in any other share.

● Proportional (PR): each individal‘s utility in his 
share is        ≥   (cake utility) / (# individuals).

Theorem (Stromquist, 1980):

● For any number of individuals, there exists
a connected + EF + PR allocation.
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Fairness in an economy of families:

● Envy-free (EF): each individal‘s utility in his 
family‘s share ≥ utility in another family‘s share.

● Proportional (PR): each individal‘s utility in his 
family‘s share ≥    (cake utility) / (# families).

Theorem (with Shmuel Nitzan):

● There might be no allocation that is both 
connected and EF and/or PR.

1. Heter. div. – families
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Theorem 1-: There are instances with 2 families 
where no connected allocation is EF/PR.

Proof: There are a couple and a single. Each 
individual wants a distinct segment of the cake:

In any connected division, at least one 
individual gets a utility of 0.

1. Heter. div. – families
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2. Homog. div. – individuals
Fairness in an economy of individuals:

● Envy-free (EF): each individal prefers his share 
to the shares of all other agents.

● Fair-share guarantee (FS): each individal 
prefers his share to an equal split of resources.

Theorem (Varian, 1974):

● If all preferences are monotone and convex,
then PO+EF+FS are compatible.
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Fairness in an economy of families:

● Envy-free (EF): each individal prefers his 
family‘s share to shares of all other families.

● Fair-share guarantee (FS): each individal 
prefers his family‘s share to the equal split.

Theorem (with Sophie Bade): 

● PO+EF - incompatile for 3 or more families;
               compatible for 2 families.

● PO+FS – always compatible.             

2. Homog. div. – families
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Theorem 2-: With 3 
families, a PO+EF 
division might not exist.
Proof: 3 families: 
● 1 couple, 2 singles.
● Cobb-Douglas prefs.
● EF → each single 
must consume same 
bundle as family. 

● Singles consume  
same bundle→not PO.

2. Homog. div. – families
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Theorem 2+: If individuals‘ preferences are 
represented by continuous utility functions, then 
a Pareto-optimal fair-share allocation exists.

Proof: Let F := set of all FS allocations.
X := FS allocation that maximizes sum of utilities
● X exists by continuity and compactness of F.
● X is FS since it is in F.
● X is PO since a Pareto-improvement of X would 
also be in F, contradicing the maximality of X.

2. Homog. div. – families
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Theorem 2++: If there are 2 families, and 
agents‘ preferences are continuous & convex, 
then a Pareto-optimal envy-free allocation exists.

Proof: Let X be a PO+FS allocation. 
● X exists by previous theorem.
● X is EF.   Suppose member i of family 1 envied  
family 2.  Then i would prefer 
(Endowment – X

1 
)  over  X

1
.    By convexity, i   

would prefer Endowment/2 to X
1  

→  X were not 
FS.

2. Homog. div. – families
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3. Indivisible – individuals
Fairness in an economy of individuals:

● Envy-free-except-c (EFc): each individual 
weakly prefers his share to any other share 
when some c goods are removed from it.

● 1-of-c maximin-share (MMS): each individual 
weakly prefers his share to dividing the goods 
into c piles and getting the worst pile.

Theorem (Budish, 2011):  for n individuals, an 
EF1 and 1-out-of-(n+1)-MMS allocation exists.
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Fairness in an economy of families:

● Envy-free-except-c (EFc): each individual 
weakly prefers his family‘s share to any other 
share when some c goods are removed from it.

● 1-of-c maximin-share (MMS): each individual 
weakly prefers his family‘s share to dividing the 
goods to c piles and getting the worst pile.

Theorem (with Warut Suksompong):  for any 
finite integer c, even with 2 families, there might 
be no allocation that is EFc and/or 1-of-c-MMS.

3. Indivisible – families
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Theorem 3-: for any finite integer c, there are 
instances with 2 families, with binary additive 
valuations, where no allocation is EFc and/or 1-
of-c-MMS.

Proof: There are 2*c goods. For each distinct 
subset of c goods, each family has a member  
who assigns utility 1 to exactly these c goods 
and utility 0 to the other c goods.

In any allocation, at least one individual has 
utility 0, so for him, it is not EFc nor 1-of-c-MMS.

3. Indivisible – families
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Interim Summary
Resource Challenge Individuals Families

1. Het
  +Div

EF+CON
PR+CON

Yes
Yes 

No for 2+ families
No for 2+ families

2. Hom
  +Div

EF+PO
FS+PO

Yes
Yes 

No for 3+ families
Yes

3. Indiv EFc
1-of-c-MMS

Yes     (c=1)

Yes   (c=n+1)

No for 2+ families
No for 2+ families

Unanimous fairness is too much to ask for.
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Democratic Fairness
“Democracy is the worst form of 
government.

...except all the others that have 
been tried.”            (Winston Churchil)

Definition: h-democratic fairness  (h [0,1]) := ∈
fairness in the eyes of at least a fraction h of 
the agents in each family.
● We saw: 1-democratic fairness is impossible.
● For what h is h-democratic fairness possible?
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Theorem 1+:  For every integer k, for every k 
families, there exists a connected 
1/k-democratic EF+PR division.

Proof:   Run an existing protocol for finding a 
connected EF+PR division (Su, 1999).

● Whenever a family has to choose the best of k 
pieces, let it choose using plurality voting.

● At least 1/k members of each family are 
happy with the family‘s choice.

1. Heter. div. – democratic
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Theorem 1+:  For every integer k, for every k 
families, there is a connected 1/k-democratic 
EF+PR division.

Corollary: For every 2 families, we can find a 
connected allocation that will win a (weak) 
majority in a referendum.

Questions: 

● Can we get a support larger than 1/2?

● Can we get a support of 1/2 with 3 families?

1. Heter. div. – democratic
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Theorem 1-:  For every integer k, there are 
instances with k families where no connected 
allocation is more than 1/k-democratic EF/PR.

Proof: A family with k members, and k-1 singles. 
Each individual wants distinct segment:

In any connected division, if two or more 
members of the family receive non-zero utility, 
then one single receives zero utility.

1. Heter. div. – democratic
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Theorem 1-:  For every integer k, there are 
instances with k families where no connected 
allocation is more than 1/k-democratic EF/PR.

● With 2 families: cannot guarantee 
the support of more than 1/2.

● With 3 or more families: cannot 
guarantee even a weak majority.

Possible solution: compromise 
on the connectivity requirement.

1. Heter. div. – democratic
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Example theorems (proofs in paper):

● For 2 families with n individuals in total:
There is a 1-democratic EF+PR division with n 
connected-components;
There might be no 1-democratic EF+PR 
division with less than n components.

● For 3 families with n individuals in total:
There is a 1/2-democratic EF+PR division 
with n/2+2 connected-components;
There might be no 1/2-democratic EF+PR 
division with less than n/4 components.

1. Heter. div. – democratic
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Open questions: 

● [Combinatorial] How many components we 
need for 3 families (between n/4 and n/2+2)?

– * Useful for small families only.
● [Geometric] Can we have a connected fair 

division of a 2-dimensional resource?

1. Heter. div. – democratic
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Theorem 2-: With 2k-1 
families, There might be 
no PO allocation that is 
EF for more than 1/k the 
members in each group.
● Proof: 2k-2 singles +   
family with k members. 

● Example for k = 3      → 
● If at least two members 
of the family are EF – 
the allocation is not PO.

2. Homog. div. – democratic
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Open question: with 3 or 4 families, is there 
always a PO allocation that is EF for at least 
1/2 the members in each family?

In other words: can we find a PO allocation 
that will win a (weak) majority in a referendum?

2. Homog. div. – democratic
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Theorem 3+:  For every integer k and k families, 
there is a 1/k-democratic “EF–2“ allocation.

Proof idea: 

● Put all goods on a line. 

● Treat the line as a cake.

● Find a connected 1/k-democratic EF division.

● “Slide“ the cuts to be between the goods.
* This creates less than 2 “envy units“.

3. Indivisible – democratic
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Theorem 3++:  For k=2 families, there is a 1/2-
democratic EF1 allocation.

Proof: EF1: same as Theorem 3+, but now the 
cut-sliding creates only 1 “envy unit“.

Corollary: For 2 families, there is an allocation 
that may win a (weak) majority in a referendum.

● Can we get a support larger than 1/2?

● Can we get a support of 1/2 with 3 families?

3. Indivisible – democratic
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Theorem 3-:  For every integer k, there are 
instances with k families with binary additive  
valuations, where no allocation is more than 
1/k-democratic EF1 (proof in paper).

● With 2 families: cannot guarantee 
the support of more than 1/2.

● With 3 or more families: cannot guarantee 
even a weak majority.

Possible solution: compromise on the 
fairness requirement.

3. Indivisible – democratic
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Theorem 3++: For every integer c ≥ 1, for 2 
families, when all agents have binary additive 
valuations, there exists a (1 – 1/2c-1)-democratic 
1-out-of-c MMS allocation.  Examples:

● 1/2-democratic 1-out-of-2 MMS;

● 3/4-democratic 1-out-of-3 MMS;

● 7/8-democratic 1-out-of-4 MMS;

3. Indivisible – democratic
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Proof idea: Round-robin protocol with approval voting.

● Each family in turn picks a good. To decide what to 
pick, the family uses weighted approval voting.

● Each family member is assigned a potential based 
on his number of remaining wanted goods, and the 
number of goods he should receive for the fairness.

● The potential of a “winning“ agent increases;
the potential of a “losing“ agent decreases.

● The voting weight of an agent is his potential-
decrease in case he loses.

3. Indivisible – democratic
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Potential table for round-robin protocol:
    (boldface cells correspond to 1-of-3-MMS)

3. Indivisible – democratic
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Proof idea (cont.): 

● Potentials are calculated such that, for each agent:
    the potential increase in case he loses
≥  the potential decrease in case he loses

● Hence, the total family potential always increases.

● At the end, the potential is:
    1 for an agent who feels the division is fair;
    0 for an agent who feels it is unfair.

● The fraction of happy agents is at least the smallest 
initial potential of an agent, which is (1 – 1/2c-1).

3. Indivisible – democratic
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Summary
Resource Challenge h-democratic

1. Het
  +Div

EF+CON
PR+CON

k families:  h = 1/k.
k families:  h = 1/k.

2. Hom
  +Div

EF+PO
FS+PO

2k-1 families:   h ≤ 1/k.
k families:    h = 1.

3. Indiv EF2 / EF1 
1-of-c-MMS

k families:  h = 1/k.
2 binary families: 1 – 1/2c-1
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Conclusion
When dividing goods among families:
● Unanimous fairness is usually impossible.
● 1/2-democratic fairness is often possible for 
the common case of 2 families.

Main open questions for 3 families:
● Het+div:   #components for envy-free?
● Hom+div: PO 1/2-democratic envy-free?
● Indiv:        1/2-democratic 1-of-c-MMS?

Thank you!
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