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(n,n) bipartite graphs
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Perfect matching Perfect fractional matching

Set of edges; each vertex is 
contained in exactly one edge.

Non-negative weight function on edges; 
total weight near each vertex = 1.   
(equivalently: total weight near each 
vertex is constant).
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(n,n) bipartite graphs

31/10/2020 19:11 Fractional and integral matchings in hypergraphs / Erel Segal-Halevi 3

Perfect matching Perfect fractional matching
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Often, we can prove the existence of a fractional matching, 
but we need an (integral) matching.

Koenig (1916): Perfect fractional matching → Perfect matching.



Example application: fair cake-cutting
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n agents with 
different preferences:

Cake (interval) should 
be partitioned into n intervals:

Preference = set of most-wanted
pieces in each n-partition:

Meunier & Su (2019): For any n “hungry agents”, there is an n-partition in which 
agent-piece graph has a balanced weight-function (= constant vertex-weights).
+ Koenig (1916): exists n-partition with envy-free allocation of pieces to agents.
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Our goal: extend Koenig’s theorem to 
d-partite hypergraphs.

Focus: tripartite hypergraphs.
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(n, n, n) tripartite hypergraphs
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Furedi (1981): Fractional matching of size n
→ integral matching of size ceil(n/2).

It is tight.
Example for n=2:
{(1,3,5), (1,4,6), (2,3,6), (2,4,5)}
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Example application: fair multi-cake-cutting
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n hungry agents with 
different preferences:

Each cake should be partitioned
into n intervals:

Preference = set of most-wanted
piece-pairs in each pair of partitions:

Theorem: There exists a pair of n-partitions with a balanced weight function.
+ Furedi (1981): There exists an envy-free allocation of n/2 pairs to n/2 agents.



Example application: fair multi-cake-cutting
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2n-1 hungry agents with 
different preferences:

Each cake should be partitioned
into n intervals:

Nyman, Su, Zerbib (2020): For 2n-1 hungry agents, there exists a pair of n-
partitions that allows an envy-free allocation of  n pairs to n agents.

(their proof uses a different technique).



Back to tripartite hypergraphs
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Conjecture: In any (n, n, 2n-1) tripartite 
hypergraph, if there exists a balanced weight-
function, then there exists a matching of size n.

If true, it would imply that we can get an envy-
free allocation to n agents, by cutting one cake 
into n pieces and the other into 2n-1 pieces.

(donating n-1 pieces to charity).

We refuted it, but proved weaker variants, e.g.:
for (n, n, n2-n/2) and (n, 2n-1, 2n-1)



Balanced weight functions
Definition: In a d-partite hypergraph, 

a weight function is called balanced if in each side, 
the total weight near each vertex is a constant.

Notation: BM(n1,n2,n3) := 

Largest m such that every (n1,n2,n3)-tripartite hypergraph 
with a balanced weight function  has a matching of size m. 

Koenig (1916):  BM(n,n) = n

Furedi (1981):   BM(n,n,n) = ceil(n/2)

Our goal: calculate BM(n1,n2,n3) for different n1,n2,n3.
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Proof Technique 
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• Koenig’s theorem BM(n,n)=n can 
be proved using Hall’s theorem for 
bipartite graphs.

• We prove lower bounds on 
BM(n1,n2,n3) using a Hall-type 
theorem for bipartite hypergraphs.



Hall-type theorems for bipartite hypergraphs
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Bipartite hypergraph: vertices are partitioned into X, Y; 
each edge contains exactly one vertex of Y.
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Neighbor set: N(Y’) := {X’ ⊆ X | {y’} ∪ X’ is an edge 

for some y’ in Y’}.

Example:   N({1}) = { {3,5}, {4,6} }.

Hall’s theorem considers the size of N(Y’) vs. |Y’|.
Its generalizations consider other properties of N(Y’):

• Matching number of N(Y’) (Aharoni & Kessler, 1990)

• Covering  number of N(Y’)   (Haxell, 1995)

• Matching width of N(Y’) (Aharoni & Haxell, 2000)

• Ψ(L(N(Y’)) (Meshulam, 2003;  Aharoni&Berger&Ziv, 2007)
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A two-player zero-sum turn-based game on a given graph G:

• Player 1 (“CON”) picks an edge e.
• Player 2 (“NON”) has two options:

• Disconnect – remove only e.

• Explode – remove e, its two endpoints, and their neighbors;
this action requires NON to pay 1 point to CON.

The game ends when no edges remain:
• If no vertices remain, then CON’s score is the num of points;
• If some isolated vertices remain, then CON’s score is infinite.
Ψ(G) :=   score of CON when both players play optimally on G.

Meshulam’s game
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Meshulam’s game
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Simple examples:
• If G has k connected components, then Ψ(G) ≥ k.
• If G is the union of k disjoint cliques, then Ψ(G) = k.

The line-graph of G is denoted L(G): 

Hall-type theorem (Meshulam 2003,2004): 
Given a bipartite hypergraph with sides X, Y:
If for every Y’ ⊆ Y :        Ψ(L(N(Y’))   ≥   |Y’|, 
then there is a matching of size |Y |.

Remark. In a bipartite graph, Ψ(L(N(Y’)) = |N(Y’)|.
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Meshulam’s game on L(G) of bipartite graphs
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Lemma: If G is a bipartite graph with a matching of size m,
then Ψ(L(G))  ≥ ceil(m/2).

Proof sketch:  G = array of cells:
row / column = vertex on one / other side; 
cell = possible edge (green cell = edge of matching).

• Cells of G are vertices in L(G); 
Pairs in same row/column are edges in L(G).

• Each explosion destroys one row and two cols
or one col and two rows.

• CON offers pairs with a green cell; each 
explosion destroys at most 2 green cells ***

m = 4
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Back to matchings in tripartite hypergraphs
Theorem: For every   n ≤ k ≤ 2n:    BM(n, k, k) ≥ ceil(k/2). 

(in words: every (n, k, k)-tripartite hypergraph 
with a balanced weight function  has a matching of size ceil(k/2)).
Corollary: BM(n, 2n-1, 2n-1) = n.

Proof idea: Given a (n, k, k)-tripartite hypergraph H, let
• Y = the side of size n;
• X = the other two sides.
For every Y’ ⊆ Y,  the set N(Y’ ) is a bipartite graph on X.
The balanced weight function on H induces 

a fractional matching on N(Y’ ) with total weight |Y’|.
By Koenig’s theorem, N(Y’ ) has a matching of size |Y’|.

By previous lemma, Ψ(L(N(Y’ )))  ≥ ceil(|Y’ |/2).  
18



Meshulam’s game with balanced weight functions
Lemma: If G is a (n,rn)-bipartite graph with balanced weight func.,

then  Ψ(L(G))  ≥ ceil(rn/(r+1)).

Proof sketch  (for special case: r ≥ 1 is an integer): 
Step 1. an (n,rn)-bipartite graph 

with a balanced weight function
has a   1-to-r matching   of size   rn.

Step 2. Play Meshulam’s game on this graph:
CON can play such that each explosion 
destroys at most (r+1) cells of matching.

Theorem: For n, r ≥ 1:  BM(n, n, rn) ≥ ceil(rn/(r+1)). 
Corollaries: BM(n, n, n2) = n

BM(n, n, 2n-1) ≥ ceil((2n-1)/3)

n = 4, r = 2
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Upper bounds
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For              n < k:                         BM(n, k, k)  ≤  floor((3k+1)/4)

If   n-ceil(k/2) divides ceil(k/2):   BM(n, k, k)  ≤ ceil(k/2)

[Recall lower bound: for every   n ≤ k ≤ 2n:    BM(n, k, k) ≥ ceil(k/2)]

For  n, r ≥ 1:                                  BM(n, n, rn)  ≤ 2rn / (2r+1)

[Recall lower bound: for n, r ≥ 1:  BM(n, n, rn) ≥ ceil(rn/(r+1)). ]

Thank you!
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