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Abstract
In a large finite population, each subject is randomly colored ei-

ther red or green with equal probabilities, independently of the oth-
ers. Then, a sub-population is selected. The goal of this paper is to
bound the difference between the number of reds and the number of
greens in the sub-population.

1 Introduction

In many experimental processes, a population is randomly divided to two
parts, a certain measurement is done on one part and then applied to the
other part. Obviously, the measurement done on one part may not be en-
tirely accurate on the other part, due to the imbalance caused by the ran-
domization. It is desired to have an upper bound on this imbalance. We
model this process in the following way.

There is a population O with a large finite number of subjects. The
population is colored randomly: for each subject, an unbiased coin-toss is
used to decide whether the subject is colored red or green. Then, a sub-
population T ⊆ O is selected. Denote by TR the set of red subjects in T and
by TG the set of green subjects. The difference

∣∣|TR| − |TG|
∣∣ denotes the

imbalance caused by the randomization process. What is high-probability
upper bound on this imbalance?

There are two extreme cases:

• The easy case is when T does not depend on the coloring, i.e, T is
a deterministic set defined before the coin-tosses. Then, both |TR|
and |TG| are expected to be near |T|/2. The difference between them
can easily be bounded using standard concentration inequalities; see
below Lemma 2.1.
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• The hard case is when T can depend on the coloring in an arbitrary
way. Then, no upper bound is possible. For example, an adversary
can select T to be the set of red subjects in O. In this case, TR = T and
TL = ∅ and the difference between them is as large as can be.

We are interested in an intermediate case, in which T may depend on the
coloring but only in a restricted way. As an example, suppose all the sub-
jects in O are placed on the real line, and T must be an interval. T may
depend on the coloring, so it is a random variable and the standard con-
centration inequalities do not apply. However, the restriction to an interval
means that an adversary cannot select T to be all and only the red subjects
in O. Therefore we may hope to have a non-trivial upper bound on the im-
balance ||TR| − |TG||. Our goal in this paper is to define a family of random
sets and prove high-probability upper bounds on their imbalance.

Our motivating application comes from economics. Often, to determine
a price for an item, a market-research is conducted in which a random sam-
ple of the buyer population is used to calculate an ‘optimal’ price, p. Natu-
rally, a price that is optimal in the sample might not be optimal in the global
population. The optimality of the price depends on the set of buyers who
want to buy the item in price p. Denote this set by T. Since p depends on the
sampling, it is a random variable, so T is a random variable too. However,
it is reasonable to assume that T is an interval, since it includes all buyers
whose valuation for the item is more than p. The concentration bounds we
develop in the present paper can be used to bound the imbalance in T.

2 Deterministic-set Halving Lemma

As a baseline, we repeat a known lemma for deterministic sets. We prove
it in three variants that will be useful later.

Below, the shorthand ”w.p. x” means ”with probability of at least x”.

Lemma 2.1 (Deterministic-set Halving Lemma). If T is a deterministic set,
then for every constant r ≥ 1:

If |T| = t: w.p. 1− 2
t2r2 :

∣∣∣|TR| − |TG|
∣∣∣ < 2r

√
t ln t (2.1)

If |T| ≥ tmin: w.p. 1− 2
(tmin)2r2 :

∣∣∣|TR| − |TG|
∣∣∣ < 2r

√
|T| ln |T| (2.2)

If |T| ≤ tmax: w.p. 1− 2
(tmax)2r2 :

∣∣∣|TR| − |TG|
∣∣∣ < 2r

√
tmax ln tmax (2.3)
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Proof. For every subject in T, define a random variable that equals 1 if the
subject is red and −1 otherwise. These are i.i.d. random variables each of
which is bounded in [−1, 1]. The sum of these variables is |TR| − |TG| and
the expectation of the sum is 0. For every q ≥ 0, define the failure probability
as:

Pf ail,q := Pr
[∣∣∣|TR| − |TG|

∣∣∣ > q
]

By Hoeffding’s inequality:

Pf ail,q < 2 exp
(

−2q2

∑T (1− (−1))2

)
≤ 2 exp

(
−2q2

4 · |T|

)
To get (2.1), let q = 2r

√
t ln t; then Pf ail,q ≤ 2/t2r2

.
To get (2.2), let q = 2r

√
|T| ln |T|; then Pf ail,q ≤ 2/|T|2r2 ≤ 2/(tmin)2r2

.
To get (2.3), let q = 2r

√
tmax ln tmax; then Pf ail,q ≤ 2/(tmax)2r2

.

3 d-bounded random-sets

If the set T is not deterministic but depends on the outcomes of the random
sampling, then Lemma 2.1 is not true without further restrictions. To han-
dle such cases in a meaningful way we need to use some structure on the
possible values of the set T.

Definition 3.1. A random-set is a random variable whose possible values
are subsets of the global population O, and whose value depends on the
random coloring process. The support of a random-set is the collection of
sets that it can be with positive probability.

Definition 3.2. Given an integer d ≥ 1, a set family W is called d-bounded
if for every integer j ≥ 1, the number of elements in W having cardinality j
is at most (j + 1)d−1.

Definition 3.3. Given an integer d ≥ 1, a random-set T is called d-bounded
if its support is a d-bounded set-family.

Example 3.4. Let O be a set of real numbers. Let p be some real-valued
random variable. Define T = {o ∈ O|o < p}. T is a random-set, since its
value is a set that depends on a random variable. It is 1-bounded, because
for every integer j, there is at most one possible outcome of T with cardi-
nality j — it is the set of j smallest numbers in O. We will later generalize
this example and show how to construct d-bounded random-sets.
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A d-bounded random-set is useful because of the following lemma.

Lemma 3.5 (Random-set Halving Lemma). Let T be a d-bounded random-set,
for some integer d ≥ 1. Then:

w.p. 1− 4/tmin : If |T| ≥ tmin:
∣∣∣|TR| − |TG|

∣∣∣ < 2d ·
√
|T| ln |T|

(3.1)

w.p. 1− 2/
√

tmax ln tmax : If |T| ≤ tmax:
∣∣∣|TR| − |TG|

∣∣∣ < 2d ·
√

tmax ln tmax

(3.2)

Proof. Denote the support of T by W (it is a collection of sets). Denote
the subset of W containing sets of j elements by W j. Every set wj ∈ W j

is deterministic, so it is eligible for the Deterministic-set Halving Lemma.
Substituting r = d in (2.1) gives, for every j, wj:

w.p. 1− 2
j2d2 :

∣∣∣|wR
j | − |wG

j |
∣∣∣ < 2d ·

√
j ln j (3.3)

Since W is d-bounded, the number of different sets in W j is at most (j +
1)d−1. Hence, by the union bound, the above statement is true for all sets in
W j w.p. 1− 2(j + 1)d−1/j2d2 ≥ 1− 4/j2:

w.p. 1− 4
j2

: ∀wj ∈W j :
∣∣∣|wR

j | − |wG
j |
∣∣∣ < 2d ·

√
j ln j (3.4)

Using the union bound again, the probability that inequality (3.4) is
false for at least one j ≥ tmin is upper-bounded by:

∞

∑
j=tmin

4
j2
≈
∫ ∞

x=tmin

4
x2 dx =

4
tmin

so w.p. 1− 4/tmin, inequality (3.4) is true for all wj with |wj| ≥ tmin. This
implies (3.1).

For (3.2), consider the following two cases:

• Case 1: |T| < 2
√

tmax ln tmax. Then w.p. 1:∣∣∣|TR| − |TG|
∣∣∣ ≤ |T| < 2

√
tmax ln tmax ≤ 2d

√
tmax ln tmax

• Case 2: |T| ≥ 2
√

tmax ln tmax. Use inequality (3.1) with tmin = 2
√

tmax ln tmax:

w.p. 1− 4/(2
√

tmax ln tmax) :
∣∣∣|TR| − |TG|

∣∣∣ < 2d
√
|T| ln |T|

≤ 2d
√

tmax ln tmax since |T| ≤ tmax.
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Motivated by the Random-set Halving Lemma, we now present ways
to construct d-bounded random-sets.

4 d-dimensional random-sets

The property of being d-bounded is not preserved under set operations
such as union. Below, we define a stronger property which is preserved
under set-union.

Definition 4.1. Let W be a set-family and w′ an arbitrary set. Define the
following set-families:

W ∩ w′ := {w ∩ w′|w ∈W} W \ w′ := {w \ w′|w ∈W}

Definition 4.2. Given an integer d ≥ 1, a set-family W is called d-dimensional
if for every set w′, the family W ∩w′ is d-bounded (as defined in Definition
3.3).

Note: An equivalent condition is that for every set w′′, the family W \w′′

is d-bounded (apply the original definition with w′ = w′′ = the comple-
ment of w′′).

Definition 4.3. Given an integer d ≥ 1, a random-set T is called d-dimensional
if its support is a d-dimensional set-family.

Obviously, every d-dimensional random-set is also d-bounded, so it is
eligible for the Random-Set Halving Lemma (3.5).

Below we provide three rules for constructing random sets with a bounded
dimension. The first one is the Containment-Order Rule.

Definition 4.4. A finite set-family is called ordered-by-containment if the
sets in the family can be indexed {w1, w2, . . . } such that for all i < j: wi ⊂
wj.

Remark 4.5. In measure theory and stochastic processes theory, a set-family
that is ordered-by-containment is called a filtration.

Lemma 4.6. If a set-family W is ordered-by-containment, then W is 1-dimensional.

Proof. If W is ordered-by-containment, then for every set w′, W ∩ w′ is
clearly also ordered-by-containment.
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In every set-family that is ordered-by-containment, ∀i, j : i < j: wi ⊂
wj. All sets are finite, so there can be at most a single wi with any given
cardinality. Hence, for every w′, the family W ∩w′ is 1-bounded. Hence, W
is 1-dimensional.

Corollary 4.7 (Containment-Order Rule). If the support of a random-set T is
ordered-by-containment, then T is 1-dimensional.

Example 4.8. Consider a family {w1, w2, . . . }where for every j, wj is the set
of j smallest elements in a finite population O of real numbers. This family
is clearly ordered-by-containment. By the Containment-Order Rule, the
random-set of Example 3.4 is not only 1-bounded but also 1-dimensional.

5 Intersections and unions of random-sets

Lemma 5.1. If W is a d-dimensional set-family and w′ is any set, then the set-
family W ∩ w′ is also d-dimensional.

Proof. We have to prove that for any set w′′, the set-family (W ∩ w′) ∩ w′′

is d-bounded. Indeed, (W ∩ w′) ∩ w′′ = W ∩ (w′ ∩ w′′), and because W is
d-dimensional, by definition W ∩ (w′ ∩ w′′) is d-bounded.

Corollary 5.2. The intersection of a d-dimensional random-set with a determin-
istic set yields a d-dimensional random-set.

Lemma 5.3 (Union Rule). If T1 is a d1-dimensional random-set and T2 is a d2-
dimensional random-set, then their union:

T := T1 ∪ T2

is a (d1 + d2)-dimensional random-set.

Proof. Let Wi be the support of Ti (for i = 1, 2) and W the support of T. Let
w′ by any deterministic set. We have to prove that W ∩ w′ is a (d1 + d2)-
bounded set-family.

We know that for each i, Wi is di-dimensional. By Lemma 5.1, Wi ∩ w′

is di-dimensional. Suppose we want to construct a set in the family W ∩
w′, and we want it to have cardinality j. The choices we can make are as
follows:
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• First, we choose a set w1 from the family W1 ∩w′. The size of w1 must
be between 0 and j, so we have at most (j + 1) choices for the size of
w1 and then at most (j + 1)d1−1 for the set w1 itself (because W1 ∩ w′

is d1-dimensional).

• Next, we choose a set w2 from the family (W2 ∩ w′) \ w1. The size
of w2 must be exactly j− |w1|. Since the family (W2 ∩ w′) \ w1 is d2-
dimensional, we have at most (j + 1)d2−1 choices for w2.

All in all, the number of choices is at most (j+ 1) · (j+ 1)d1−1 · (j+ 1)d2−1 =
(j + 1)d1+d2−1.

Hence the set-family W ∩ w′ is (d1 + d2)-bounded. Since this is true for
every set w′, the set-family W is (d1 + d2)-dimensional.

Corollary 5.4. For every d, the union of d one-dimensional random-sets is a d-
dimensional random-set (hence it is also d-bounded).

Proof. By induction on d, using Lemma 5.3 as the induction step.

Example 5.5. Let O be a finite set of points in the plane, O ⊆ R2.
Let T := {(x, y) ∈ O|x > px or y > py}, where px and py are random

variables. Then, T is a 2-dimensional random-set, since it is a union of the
two random-sets: Tx := {(x, y)|x > px} and Ty := {(x, y)|y > py}, which
are 1-dimensional by the Order-Containment Rule.

The analogue of Lemma 5.3 for intersections of random-sets is not true.

Example 5.6. Let T = {(x, y) ∈ O|x > px and y > py}, where px and py
are random variables. Then, T = Tx ∩ Ty, where Tx, Ty are 1-dimensional
random-sets defined as in the previous example. However, T is not d-
bounded for any finite d. This is illustrated in Figure 1. The points rep-
resent the elements of O. Each quarter-plane represents a possible value of
T. The cardinality of each such value is 1. Therefore, the number of sets
of cardinality 1 in the support of T can be as high as |O| (the size of the
global population). This is not bounded by (1 + 1)d−1 for and constant d,
since |O| can be arbitrarily large. Similarly, for every j ≥ 1, the number of
sets of cardinality j in the support of T is not bounded by (j + 1)d−1 for any
constant d.

Moreover, if |O| is sufficiently large, with high probability there will be
a large number of adjacent elements of O colored red. An adversary can
select a quarter-plane that contains all and only these red elements. This
quarter-plane will have an arbitrarily large imbalance.
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Figure 1: An intersection of two 1-dimensional random-sets may not be
d-bounded.
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Intersections of random-sets have a bounded dimension if one of the
elements in the intersection has a bounded cardinality.

Lemma 5.7 (Intersection Rule). Given integers d, n, d′′ ≥ 1 and k ≥ 1, if:

• Tk,d is a d-dimensional random-set which is bounded by: |Tk,d| < k w.p. 1.

• For every i ∈ 1, . . . , n, Ti is a d′′-dimensional random-set.

Then their intersection T, defined as:

T = Tk,d ∩ T1 ∩ · · · ∩ Tn

has a dimension of at most ((d + n · d′′) lg k).

Proof. Let Wk,d be the support of Tk,d; for each i ∈ 1, . . . , n let Wi be the
support of Ti; let W be the support of T. Let w′ by any deterministic set. We
have to prove that W ∩ w′ is ((d + n · d′′) lg k)-bounded set-family.

Every set w ∈W ∩ w′ can be constructed in the following way:

• Select a set w0 ∈Wk,d ∩ w′, having j0 items.

• Select a set w1 ∈ (W1 ∩ w0) ∩ w′, having j1 items;

• Select a set w2 ∈ ((W2 ∩ w1) ∩ w0) ∩ w′, having j2 items;

• ... Select a set wn ∈ (Wn ∩ ...∩ w0) ∩ w′, having jn items.

By definition of Tk,d, |Tk,d| < k so j0 ≤ k − 1. Since Tk,d is d-dimensional,
given j0, the number of choices for w0 is at most (j0 + 1)d−1 ≤ kd−1. Since
there are at most k choices for j0, the total number of choices for w0 is at
most kd.

For every i ≥ 1, ji ≤ ji−1 and the final set w is equal to wn. Hence, the
number of elements in w is jn. So we have to select a weakly-decreasing
sequence of non-negative integers, j1, . . . , jn−1, such that k > j0 ≥ j1 ≥
· · · ≥ jn−1 ≥ j. For each ji there are at most k− j < k choices, so the total
number of sequences is at most kn−1.

The set-families used in each of the following steps are intersections
of a d′′-dimensional set with deterministic sets. Hence they are all d′′-
dimensional. For every selection of ji, there are at most (ji + 1)d′′−1 ≤ kd′′−1

choices for wi. The total number of choices for all the wi, for i = 1, . . . , n, is
thus at most kn·(d′′−1).

Multiplying the three numbers of choices gives that the total number
of ways to construct w is at most kd+(n−1)+n(d′′−1) = kd+n·d′′−1 ≤ (j +
1)((d+n·d′′) lg k)−1.
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Remark 5.8. If the set Tk,d is deterministic and |Tk,d| = k, then the set Wk,d is
a singleton and there is only one way to choose w0. Since 1 = k0, the proof
is still valid if we take d = 0, so the resulting random-set is (n · d′′ · lg k)-
dimensional.

Effectively, in the Intersection Rule, a deterministic set is equivalent to
a zero-dimensional random-set. The same is true in the Union Rule.
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