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Setting

Object:

     v
A
:      3        2             3            1             2  

     v
B
:      1        1             1            5             4

Input: m objects, n agents, additive valuations:

Goal: Envy-Free and Pareto-Optimal division.
          No monetary transfers.



Main problem

Object:

     v
A
:      3        2             3            1             2  

     v
B
:      1        1             1            5             4

The objects are indivisible:

→ An envy-free Pareto-optimal allocation
    might not exist.



Handling indivisible objects

Common approach in computer science:
     Approximate fairness, e.g.:
          Envy-free except one object (EF1)
          – Unacceptable with high-value objects.



Handling indivisible objects

Common approach in economics:
     Randomization:
          Envy-free in expectation.
          – Unacceptable with high-value objects.



Handling indivisible objects

Our approach:
     Minimal Sharing:
          Find the smallest number of objects that
          must be shared to attain PO+EF.



Problem statement

INPUT:  valuation matrix   v : n x m. 
     v

i,o 
= value of object o to agent i.

     [Initially we assume: v
i,o 

> 0]

OUTPUT:  allocation matrix   z : n x m. 
     z

i,o 
= fraction of object o given to agent i.

     [Everything is allocated:   ∑
i
 z

i,o
 = 1  for all o]

     [Additive utilities: u
i
 (z) := ∑

o
 z

i,o
 v

i,o
]

GOAL: minimize #sharings(z)  s.t.   z is PO+EF.
    #sharings(z)  :=  # { (i,o) |   z

i,o
 >  0 } – m

    [#sharings(z) = 0    iff    no objects are shared] 



Solution outline

Step 1. Upper Bound:
A PO+EF allocation with at most n-1 sharings 
always exists and can be found efficiently.

Step 2. Minimization Algorithm:
A PO+EF allocation with a minimum number of 
sharings can be found in time polynomial in m, 
if n is fixed.



Step 1: Upper Bound

Preliminary Theorem.

A PO+EF allocation with  ≤ n-1  sharings exists 
and can be found in time O(poly(m,n)).



Step 1: Upper Bound

Preliminary Theorem.
A PO+EF allocation with  ≤ n-1  sharings exists 
and can be found in time O(m2n2(m+n)).

Proof Sketch.
(a) Ignoring the number of sharings, find an 
allocation maximizing the product of utilities.

(b) Modify the allocation to have ≤ n-1 
sharings, without changing utilities.

(c) The allocation still maximizes the product. 
Any such allocation is PO+EF.



Step 1: Upper Bound

1(a): Find an allocation z maximizing the 
product of utilities, ignoring #sharings:

– Can be done in time O((n+m)4 log(n+m)).

James B Orlin. "Improved algorithms for computing 
Fisher’s market clearing prices" (STOC 2010).

– Any such allocation is PO+EF.

E Eisenberg and D Gale, "Consensus of subjective 
probabilities" (Annals of Math. Statistics, 1959).



Step 1: Upper Bound

1(b): Find a new allocation z* with same 
utilities (U

1
,…,U

n
) and  ≤ n-1 sharings.

LP-based proof    (extends Stephen Wilson, "Fair division 

using linear programming", preprint, Iowa State University, 1998):
m+n-1 
constraints
→ Basic sol. 
has ≤ m+n-1 
nonzeros.
→ Allocation 
has ≤ n-1
sharings.

Utility of n-th agent must be U
n
 too.



Step 1: Upper Bound

1(b): Find a new allocation z* with same 
utilities (U

1
,…,U

n
) and  ≤ n-1 sharings.

Polytime proof (extends "Dividing goods or bads under additive 

utilities", Bogomolnaia&Moulin&Sandomirskiy&Yanovskaya, 2016).
Construct the directed consumption graph of z.
z is PO → no cycles with weight-product < 1.
Remove each cycle with weight-product = 1 by 
trading along the cycle without changing the utilities.

Claim: in the resulting  z*, the undirected consumption 
graph is acyclic (since each such cycle corresponds to two 

opposite directed cycles with product=1).
Acyclic graph→     ≤ m+n-1 edges→    ≤ n-1 sharings.



Step 1: Upper Bound

1(c): The new allocation z* has:
At most n-1 sharings;
Product-maximizing utilities U

1
,…,U

n
.

   → It is still PO+EF.

Conclusion: 
n-1 is an upper bound on #sharings.
In worst case, n-1 sharings are necessary.
In some cases, less sharings are sufficient.
Next goal: minimize #sharings.



Step 2: Minimization – 2 agents
Discouraging result:
n=2 agents with identical valuations:
n–1 = 1, so either 0 or 1 sharings.
Any allocation is PO.
An allocation is EF iff both agents get exactly 
the same utility.

→ Equivalent to NP-hard problem Partition!
 

Conclusion: Minimizing the number of 
sharings is computationally-hard even for 2 
agents with identical valuations. 



Step 2: Minimization – 2 agents
Encouraging result. 
n=2  agents with generic valuations, i.e.:
        the m ratios   v

a,o 
/ v

b,o
  are all different.

Order the objects by decreasing ratio:
v

a,1
/v

b,1
 > v

a,2 
/ v

b,2
 > ...  >  v

a,o 
/ v

b,o
 > … >  v

a,m 
/ v

b,m

 
Order Lemma. In a PO allocation, If Alice 
gets a positive amount of some object o, then 
Alice gets all objects o' < o.
Proof. Otherwise Alice could trade o for o'.



Step 2: Minimization – 2 agents
Encouraging result (cont.). 
Any PO allocation must have the form:
A:  1         1          …           x        …          0
B:  0         0          …          1-x       …          1
  for some object o and x in [0,1].
Only m+1 PO allocations with 0 sharings.
It is easy to check each of them for EF.
  → Minimization can be solved in  O(m log m).
Conclusion: For 2 agents, minimizing the 
number of sharings is computationally-hard 
even only with non-generic preferences.



Step 2: Minimization – 2 agents
Partially-generic valuations. 
Degree of degeneracy :=  smallest d such that 
for any ratio r > 0 there are at most d objects o 
with v

a,o 
/ v

b,o
= r       (generic: d=1;  identical: d=m).

At most  2d * m  allocations with no sharing.
 

If d = O(log(m)), the minimization can still be 
solved in time O(poly(m)).
 

If d = Ω(ma) for some a>0, the minimization is 
NP-hard  (reduction from Partition).



Step 2: Minimization – n agents

Generic valuations:= for every two agents i,j:
        the m ratios   v

i,o 
/ v

j,o
  are all different.

Main Theorem. When n is fixed and the 
valuations are generic, a PO+EF allocation 
minimizing the number of sharings can be 
found in time O(poly(m)).



Step 2: Minimal Sharing
Main Theorem. When n is fixed and the 
valuations are generic, a PO+EF allocation 
minimizing the number of sharings can be 
found in time O(poly(m)).
Proof Sketch.
(a) Define consumption-graph of an allocation.
(b) At most O(mn(n-1)/2) consumption-graphs 
correspond to PO allocations, and they can be 
enumerated with breadth-first search.
(c) Given a consumption-graph, PO+EF can 
be decided in time O(m2).



Step 2(a): Consumption graph

Consumption graph of allocation z := 
Bipartite graph: agents vs. objects.
Edge between i and o  iff  z

i,o
 > 0.

Example:

Alice takes farm; Bob takes car; shared house.



Step 2(a): Consumption graph

Directed consumption graph of z := 
Edge from i to o  iff  z

i,o
 > 0; weight v

i,o
.

Edge from o to i                ; weight 1/v
i,o

.

           v
a
 = [4, 2.5, 1];                v

b
 = [1.25, 2, 5].



Step 2(a): Consumption graph

Cycle Lemma. An allocation is PO iff its 
directed consumption graph contains no 
cycles whose product of weights is < 1  (like this: )

           v
a
 = [4, 25., 1];                v

b
 = [1.25, 2, 5].



Step 2(a): Consumption graph

Cycle Lemma - Proof Sketch.
→ Given a cycle with weight-product < 1, 
we can trade goods among agents in the 
cycle such that all participants strictly gain.

← Suppose there are no such cycles. Pick 
an arbitrary agent i with nonempty bundle. 
Find a minimum-product path from i to every 
other agent  j. Define the weight of j as the 
product of this path. We can prove that the 
allocation maximizes the weighted-sum of 
the agents' utilities. Hence it is PO.



Step 2(a): Consumption graph

Corollary. It is possible to check whether a 
consumption-graph corresponds to a PO 
allocation in time O(m n (m+n)).

Proof. 
Convert weights to their logarithms; 
Use algorithms for negative cycle detection
(e.g. Bellman-Ford algorithm).



Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs

We construct a tree of consumption graphs.
 

For all k in 1,…,n, 
level k will contain the consumption graphs 
of all PO allocations among agents 1,…,k.



Step 2(b): Tree of PO graphs
All objects are given to agent 1.

All objects are given to agents 1,2.     2m+1 options (by Order Lemma).



Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs 
… In level 3, all objects are given to 1,2,3.
For each node in level 2:

All objects of 1 are divided between 1 and 3;
2m

1
+1 options     (m

1 
= #objects given to 1).

All objects of 2 are divided between 2 and 3.
2m

2
+1 options     (m

2
= #objects given to 2).

(2m
1
+1)(2m

2
+1) = O(m2) children per node.

All in all: O(m3) nodes in level 3.



Step 2(b): Tree of PO graphs



Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs 
… In level k, all objects are given to 1,…,k.:

O(mk-1) children per node in level k-1.
O(mk(k-1)/2) nodes in level k.

All in all:  O(mn(n-1)/2)    leaves  (in level n).
 

Apply the Cycle Lemma to the leaves.
Only graphs of PO allocations remain.
 

By the Generation Lemma (next slide):
All graphs of PO allocations are in the tree→ 



Step 2(b): Tree of PO graphs

Generation Lemma. Every PO allocation z+ 
among agents 1,…,k+1  can be generated by:
Taking some PO allocation z among 1,…,k;
Having each agent i in 1,…,k 
  share zero or more objects with agent k+1.

Proof sketch.
 (I)  Initialize z := z+ without the (k+1)-th bundle.
 (II) Take an object o from the (k+1)-th bundle.
For each agent i in 1,…,k, let z'(i) := z with o  
given to agent i. One of these z'(i) must be PO.*
 (III) Let z := z'(i) [z remains PO] and return to (II).



Step 2(b): Tree of PO graphs

Generation Lemma – elaboration of part II*:
Suppose each z'(i) is not PO ≡ has a PI trade.
z is PO → this PI trade is not in z → it must 
involve agent i giving o to some agent,   j(i).

Create a graph on 1,…,k  with edges i→j(i).
This graph has a cycle. Concatenate all the PI 
trades along the cycle and get a long PI trade.

In the long PI, each agent both receives o (from 

the agent before it) and gives o (to the agent after it). 
Hence, the PI trade can be done without o.
Hence, the PI exists in z too – contradiction.



Step 2(c): PO+EF allocations

For each consumption graph in leaf of tree:
If it has cycle with product < 1 – discard leaf.
If #sharings (= #edges – m) > n-1 – discard leaf.
Otherwise, create a linear program with:

One variable for each sharing (at most n-1).
Feasibility constraint for each shared good.
EF constraint for each pair of agents (n2-n).

Size of LP does not depend on m.
Can be solved in constant time (for fixed n).
All in all: O(m2) time for each leaf.
→ Minimal-sharing is solved in O(poly(m)).   □



Conclusion

The minimal sharing algorithm is useful when:
There are few agents and many objects.
The objects are too valuable for approximate-
fairness or fairness-in-expectation.

Objects can be shared, but it is undesired.



Variants (in paper)

Minimize the number of shared goods
instead of the number of sharings.
 

Use other fairness definitions 
instead of envy-freeness:
Proportionality := each agent's value is at 
least 1/n of the total value.

Weighted proportionality := proportionality 
with different entitlements.

Equitability := all agents have the same 
subjective value.



Variants (in paper)

If we want fairness but do not care about PO:

Finding an allocation with ≤ n-1 sharings 
becomes computationally easier.
 

Minimizing the number of sharings becomes 
NP-hard even when agents have generic 
valuations   (reduction from Partition).



Ongoing and Future Work

Negative and mixed values.
Consensus division: each agent values each 
bundle as exactly 1/n.

Useful for truthful allocation mechanisms.
Upper bound: n*(n-1) sharings.

Non-linear sharing, e.g.: a fraction x of an 
object gives only a fraction x2 of its utility.

Minimize the utility of shared goods, instead 
of just their number.

Thank you for coming ☺
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