
Fair Division
with Minimal Sharing

(Ezekiel 47:14)

EREL SEGAL-HALEVI
 (ARIEL UNIVERSITY)

WITH

FEDOR SANDOMIRSKIY
 (TECHNION / HSE ST. PETERSBURG)

Setting

Object:

 v
A
: 3 2 3 1 2

 v
B
: 1 1 1 5 4

Input: m objects, n agents, additive valuations:

Goal: Envy-Free and Pareto-Optimal division.
 No monetary transfers.

Main problem

Object:

 v
A
: 3 2 3 1 2

 v
B
: 1 1 1 5 4

The objects are indivisible:

→ An envy-free Pareto-optimal allocation
 might not exist.

Handling indivisible objects

Common approach in computer science:
 Approximate fairness, e.g.:
 Envy-free except one object (EF1)
 – Unacceptable with high-value objects.

Handling indivisible objects

Common approach in economics:
 Randomization:
 Envy-free in expectation.
 – Unacceptable with high-value objects.

Handling indivisible objects

Our approach:
 Minimal Sharing:
 Find the smallest number of objects that
 must be shared to attain PO+EF.

Problem statement

INPUT: valuation matrix v : n x m.
 v

i,o
= value of object o to agent i.

 [Initially we assume: v
i,o

> 0]

OUTPUT: allocation matrix z : n x m.
 z

i,o
= fraction of object o given to agent i.

 [Everything is allocated: ∑
i
 z

i,o
 = 1 for all o]

 [Additive utilities: u
i
 (z) := ∑

o
 z

i,o
 v

i,o
]

GOAL: minimize #sharings(z) s.t. z is PO+EF.
 #sharings(z) := # { (i,o) | z

i,o
 > 0 } – m

 [#sharings(z) = 0 iff no objects are shared]

Solution outline

Step 1. Upper Bound:
A PO+EF allocation with at most n-1 sharings
always exists and can be found efficiently.

Step 2. Minimization Algorithm:
A PO+EF allocation with a minimum number of
sharings can be found in time polynomial in m,
if n is fixed.

Step 1: Upper Bound

Preliminary Theorem.

A PO+EF allocation with ≤ n-1 sharings exists
and can be found in time O(poly(m,n)).

Step 1: Upper Bound

Preliminary Theorem.
A PO+EF allocation with ≤ n-1 sharings exists
and can be found in time O(m2n2(m+n)).

Proof Sketch.
(a) Ignoring the number of sharings, find an
allocation maximizing the product of utilities.

(b) Modify the allocation to have ≤ n-1
sharings, without changing utilities.

(c) The allocation still maximizes the product.
Any such allocation is PO+EF.

Step 1: Upper Bound

1(a): Find an allocation z maximizing the
product of utilities, ignoring #sharings:

– Can be done in time O((n+m)4 log(n+m)).

James B Orlin. "Improved algorithms for computing
Fisher’s market clearing prices" (STOC 2010).

– Any such allocation is PO+EF.

E Eisenberg and D Gale, "Consensus of subjective
probabilities" (Annals of Math. Statistics, 1959).

Step 1: Upper Bound

1(b): Find a new allocation z* with same
utilities (U

1
,…,U

n
) and ≤ n-1 sharings.

LP-based proof (extends Stephen Wilson, "Fair division

using linear programming", preprint, Iowa State University, 1998):
m+n-1
constraints
→ Basic sol.
has ≤ m+n-1
nonzeros.
→ Allocation
has ≤ n-1
sharings.

Utility of n-th agent must be U
n
 too.

Step 1: Upper Bound

1(b): Find a new allocation z* with same
utilities (U

1
,…,U

n
) and ≤ n-1 sharings.

Polytime proof (extends "Dividing goods or bads under additive

utilities", Bogomolnaia&Moulin&Sandomirskiy&Yanovskaya, 2016).
Construct the directed consumption graph of z.
z is PO → no cycles with weight-product < 1.
Remove each cycle with weight-product = 1 by
trading along the cycle without changing the utilities.

Claim: in the resulting z*, the undirected consumption
graph is acyclic (since each such cycle corresponds to two

opposite directed cycles with product=1).
Acyclic graph→ ≤ m+n-1 edges→ ≤ n-1 sharings.

Step 1: Upper Bound

1(c): The new allocation z* has:
At most n-1 sharings;
Product-maximizing utilities U

1
,…,U

n
.

 → It is still PO+EF.

Conclusion:
n-1 is an upper bound on #sharings.
In worst case, n-1 sharings are necessary.
In some cases, less sharings are sufficient.
Next goal: minimize #sharings.

Step 2: Minimization – 2 agents
Discouraging result:
n=2 agents with identical valuations:
n–1 = 1, so either 0 or 1 sharings.
Any allocation is PO.
An allocation is EF iff both agents get exactly
the same utility.

→ Equivalent to NP-hard problem Partition!

Conclusion: Minimizing the number of
sharings is computationally-hard even for 2
agents with identical valuations.

Step 2: Minimization – 2 agents
Encouraging result.
n=2 agents with generic valuations, i.e.:
 the m ratios v

a,o
/ v

b,o
 are all different.

Order the objects by decreasing ratio:
v

a,1
/v

b,1
 > v

a,2
/ v

b,2
 > ... > v

a,o
/ v

b,o
 > … > v

a,m
/ v

b,m

Order Lemma. In a PO allocation, If Alice
gets a positive amount of some object o, then
Alice gets all objects o' < o.
Proof. Otherwise Alice could trade o for o'.

Step 2: Minimization – 2 agents
Encouraging result (cont.).
Any PO allocation must have the form:
A: 1 1 … x … 0
B: 0 0 … 1-x … 1
 for some object o and x in [0,1].
Only m+1 PO allocations with 0 sharings.
It is easy to check each of them for EF.
 → Minimization can be solved in O(m log m).
Conclusion: For 2 agents, minimizing the
number of sharings is computationally-hard
even only with non-generic preferences.

Step 2: Minimization – 2 agents
Partially-generic valuations.
Degree of degeneracy := smallest d such that
for any ratio r > 0 there are at most d objects o
with v

a,o
/ v

b,o
= r (generic: d=1; identical: d=m).

At most 2d * m allocations with no sharing.

If d = O(log(m)), the minimization can still be
solved in time O(poly(m)).

If d = Ω(ma) for some a>0, the minimization is
NP-hard (reduction from Partition).

Step 2: Minimization – n agents

Generic valuations:= for every two agents i,j:
 the m ratios v

i,o
/ v

j,o
 are all different.

Main Theorem. When n is fixed and the
valuations are generic, a PO+EF allocation
minimizing the number of sharings can be
found in time O(poly(m)).

Step 2: Minimal Sharing
Main Theorem. When n is fixed and the
valuations are generic, a PO+EF allocation
minimizing the number of sharings can be
found in time O(poly(m)).
Proof Sketch.
(a) Define consumption-graph of an allocation.
(b) At most O(mn(n-1)/2) consumption-graphs
correspond to PO allocations, and they can be
enumerated with breadth-first search.
(c) Given a consumption-graph, PO+EF can
be decided in time O(m2).

Step 2(a): Consumption graph

Consumption graph of allocation z :=
Bipartite graph: agents vs. objects.
Edge between i and o iff z

i,o
 > 0.

Example:

Alice takes farm; Bob takes car; shared house.

Step 2(a): Consumption graph

Directed consumption graph of z :=
Edge from i to o iff z

i,o
 > 0; weight v

i,o
.

Edge from o to i ; weight 1/v
i,o

.

 v
a
 = [4, 2.5, 1]; v

b
 = [1.25, 2, 5].

Step 2(a): Consumption graph

Cycle Lemma. An allocation is PO iff its
directed consumption graph contains no
cycles whose product of weights is < 1 (like this:)

 v
a
 = [4, 25., 1]; v

b
 = [1.25, 2, 5].

Step 2(a): Consumption graph

Cycle Lemma - Proof Sketch.
→ Given a cycle with weight-product < 1,
we can trade goods among agents in the
cycle such that all participants strictly gain.

← Suppose there are no such cycles. Pick
an arbitrary agent i with nonempty bundle.
Find a minimum-product path from i to every
other agent j. Define the weight of j as the
product of this path. We can prove that the
allocation maximizes the weighted-sum of
the agents' utilities. Hence it is PO.

Step 2(a): Consumption graph

Corollary. It is possible to check whether a
consumption-graph corresponds to a PO
allocation in time O(m n (m+n)).

Proof.
Convert weights to their logarithms;
Use algorithms for negative cycle detection
(e.g. Bellman-Ford algorithm).

Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs

We construct a tree of consumption graphs.

For all k in 1,…,n,
level k will contain the consumption graphs
of all PO allocations among agents 1,…,k.

Step 2(b): Tree of PO graphs
All objects are given to agent 1.

All objects are given to agents 1,2. 2m+1 options (by Order Lemma).

Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs
… In level 3, all objects are given to 1,2,3.
For each node in level 2:

All objects of 1 are divided between 1 and 3;
2m

1
+1 options (m

1
= #objects given to 1).

All objects of 2 are divided between 2 and 3.
2m

2
+1 options (m

2
= #objects given to 2).

(2m
1
+1)(2m

2
+1) = O(m2) children per node.

All in all: O(m3) nodes in level 3.

Step 2(b): Tree of PO graphs

Step 2(b): Tree of PO graphs

2(b). Enumerating PO consumption graphs
… In level k, all objects are given to 1,…,k.:

O(mk-1) children per node in level k-1.
O(mk(k-1)/2) nodes in level k.

All in all: O(mn(n-1)/2) leaves (in level n).

Apply the Cycle Lemma to the leaves.
Only graphs of PO allocations remain.

By the Generation Lemma (next slide):
All graphs of PO allocations are in the tree→

Step 2(b): Tree of PO graphs

Generation Lemma. Every PO allocation z+
among agents 1,…,k+1 can be generated by:
Taking some PO allocation z among 1,…,k;
Having each agent i in 1,…,k
 share zero or more objects with agent k+1.

Proof sketch.
 (I) Initialize z := z+ without the (k+1)-th bundle.
 (II) Take an object o from the (k+1)-th bundle.
For each agent i in 1,…,k, let z'(i) := z with o
given to agent i. One of these z'(i) must be PO.*
 (III) Let z := z'(i) [z remains PO] and return to (II).

Step 2(b): Tree of PO graphs

Generation Lemma – elaboration of part II*:
Suppose each z'(i) is not PO ≡ has a PI trade.
z is PO → this PI trade is not in z → it must
involve agent i giving o to some agent, j(i).

Create a graph on 1,…,k with edges i→j(i).
This graph has a cycle. Concatenate all the PI
trades along the cycle and get a long PI trade.

In the long PI, each agent both receives o (from

the agent before it) and gives o (to the agent after it).
Hence, the PI trade can be done without o.
Hence, the PI exists in z too – contradiction.

Step 2(c): PO+EF allocations

For each consumption graph in leaf of tree:
If it has cycle with product < 1 – discard leaf.
If #sharings (= #edges – m) > n-1 – discard leaf.
Otherwise, create a linear program with:

One variable for each sharing (at most n-1).
Feasibility constraint for each shared good.
EF constraint for each pair of agents (n2-n).

Size of LP does not depend on m.
Can be solved in constant time (for fixed n).
All in all: O(m2) time for each leaf.
→ Minimal-sharing is solved in O(poly(m)). □

Conclusion

The minimal sharing algorithm is useful when:
There are few agents and many objects.
The objects are too valuable for approximate-
fairness or fairness-in-expectation.

Objects can be shared, but it is undesired.

Variants (in paper)

Minimize the number of shared goods
instead of the number of sharings.

Use other fairness definitions
instead of envy-freeness:
Proportionality := each agent's value is at
least 1/n of the total value.

Weighted proportionality := proportionality
with different entitlements.

Equitability := all agents have the same
subjective value.

Variants (in paper)

If we want fairness but do not care about PO:

Finding an allocation with ≤ n-1 sharings
becomes computationally easier.

Minimizing the number of sharings becomes
NP-hard even when agents have generic
valuations (reduction from Partition).

Ongoing and Future Work

Negative and mixed values.
Consensus division: each agent values each
bundle as exactly 1/n.

Useful for truthful allocation mechanisms.
Upper bound: n*(n-1) sharings.

Non-linear sharing, e.g.: a fraction x of an
object gives only a fraction x2 of its utility.

Minimize the utility of shared goods, instead
of just their number.

Thank you for coming ☺

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

